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AFiT/DS/ENY/98-03 Abstract 

This work examines multiple control concepts for satellite-mounted manipulators (SMM). The 

primary focus is on base-actuated concepts, which eliminate singularity problems associated with 

free-floating SMMs. A new form of the equations of motion for an n-link SMM is developed using 

a quasi-coordinate form of Lagrange's Equation. Alternative free-floating SMM designs are pre- 

sented which eliminate dynamic singularities, but still experience difficulties due to the unactuated 

base. A new generic SMM controller is developed as a framework for various control concepts with 

and without base actuation. Momentum-constrained Jacobians are shown to produce better SMM 

tracking than fixed-base Jacobians, even when base motion feedback is incorporated into the con- 

troller. A variation of the generic controller, termed the Reduced Base-Torque Controller (RBTC), 

is introduced and shown to reduce attitude control costs significantly while retaining the advantages 

of base control. The RBTC uses a task priority technique, assigning the first priority to end-effector 

control and secondary priority to maintaining a zero angular momentum state. Finally, the SMM 

dynamic model and generic controller are modified to include a cluster of control moment gyro- 

scopes (CMG), and the effects of using the cluster for base attitude control in the SMM system are 

considered. A controller variation is developed which avoids singularities of both the CMG cluster 

and the manipulator system. A variety of planar and spatial simulations are used to validate the per- 

formance of the controllers. The results indicate that the base attitude control concept is the most 

viable SMM control concept in terms of tracking performance and singularity avoidance. 
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Singularity Avoidance Strategies For Satellite Mounted 
Manipulators Using Attitude Control 

Chapter 1 - Introduction 

1.1  Motivation 

Since the beginning of man's exploration of space, an important role for robots has been evi- 

dent. Given the hostile nature of the space environment, robots have often provided a safer and less 

expensive alternative to manned missions. For tasks too complex for autonomous robots, these de- 

vices have served as tools to augment natural human abilities. Examples of robot use in space range 

from surface rovers for planetary exploration to the Space Shuttle's Remote Manipulator System for 

a variety of tasks in orbit around Earth. As the fields of robotics and teleoperation mature, the role 

of robots in space will surely increase. 

In recent years, a concept which has attracted significant interest is the satellite-mounted ma- 

nipulator (SMM). Such a device could provide the flexibility required for many tasks while having 

a greater reach than current manned space operations. An SMM could be used for a variety of mis- 

sions, including satellite maintenance, repair, and retrieval. The potential of SMMs is acknowledged 

by the National Aeronautics and Space Administration (NASA), as evidenced by several programs 

and studies. In the 1970's, the Flight Telerobotic Servicer was an early program to develop an SMM 

for on-orbit servicing. This program spawned several studies [8] [33], but was ultimately cancelled 

for budgetary reasons. Currently, NASA is working with the University of Maryland's Space Sys- 

tems Laboratory on the RANGER program. RANGER is a satellite with a pair of seven degree- 

of-freedom (DOF) anthropomorphic manipulator arms, designed as a testbed for satellite mounted 

manipulators. It is due to launch in 1998 [1]. 

1 



To date, most of the research on the control of space robots has centered on "free-floating" 

robots. Free-floating robots are defined as space robots where the satellite base position and ori- 

entation are unactuated. Without base actuation, no external forces or torques act upon the system 

when the end-effector is not in contact with the work environment. The linear and angular momenta 

of the system are conserved, so the spacecraft base moves in reaction to commanded arm motion. 

This interaction between arm and base has been noted in the operation of the Remote Manipulator 

System aboard NASA's Space Shuttle [20]. The extent of the reaction depends upon the mass and 

inertia of the manipulator relative to the satellite base. If the arm represents a significant fraction 

of the combined system, the lack of base actuation can present problems for the robot controller. 

The conservation of angular momentum acts as a nonholonomic constraint on the system. This se- 

riously complicates path planning, as the orientation of the base is dependent on the path of the arm 

traj ectory in j oint space. 

Several authors have suggested control concepts for free-floating SMMs [2,23,30,39,44]. 

These concepts ensure that the manipulator's objectives are met while compensating for, or even 

controlling, the base movement using only the manipulator's joint actuators. Unfortunately, some 

of these methods fail in the neighborhood of singularities which can potentially occur throughout 

large regions of workspace. Other methods cannot precisely track a prescribed path between points 

in workspace. 

The motivation for focussing on the free-floating mode of operation for SMMs is somewhat 

ambiguous in the literature. In one of the earliest papers on SMMs, Lindberg et al. [20] mention 

the poor interaction between the Shuttle attitude control system and the robot end-effector as the 

reason for disabling attitude control when the manipulator is operating. Other authors offer a range 

of motivating factors, from thruster exhaust contamination to actuator saturation and limited power 
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Figure 1. SMM Control Concept Hierarchy 

storage capacity [31,34,46]. However, the most prevalent argument for the free-floater is the cost 

ofbase control in terms of thruster fuel [2,30,35,44,46]. 

Although all of these concerns have merit, the central thesis of this work is that base attitude 

control must play an important role in an SMM control system. Despite the disadvantages, base 

control offers substantial advantages. Controlling the base solves most singularity problems and 

greatly simplifies path planning by eliminating the path-dependent behavior of the system. It also 

creates redundancy which can be exploited in numerous ways. 

Allowing the possibility ofbase control raises a number of questions. What is the goal ofbase 

control? Is it to fix the base and provide a stable platform so that the SMM performs like terrestrial 

robots, or should the base control be an integrated part of the manipulator system? Does this decision 

apply to both translation and attitude, or just attitude? What type of actuator is appropriate? And 

how does the actuator choice affect the controller goals? The options suggested by these questions 

form the basis for a hierarchy of SMM control concepts, as shown in Figure 1. 



In this work, a preference for the controlled base concept is already clear from the earlier dis- 

cussion. Referring to the concept hierarchy in Figure 1, the next consideration is whether to control 

the base in translation and attitude (Complete Base Control), or to control only base attitude, leav- 

ing the base free to translate in reaction to arm motion (Base Attitude Control). In making this 

choice, the benefits of translation control must be weighed against its cost. Base control is claimed 

to eliminate singularities, simplify path planning, and create redundancy. These benefits do not re- 

sult equally from translation and attitude control. Translation control eliminates some singularities, 

but only those least likely to cause controller problems. Attitude control eliminates far more serious 

singularities which can be encountered throughout large areas of workspace. Since linear momen- 

tum is a holonomic constraint, translation control offers no advantage in path planning, while atti- 

tude control is essential to eliminating the path-dependent behavior of the system. The redundancy 

created by base control is evenly divided between translation and attitude control, each adding three 

additional controlled degrees of freedom. The disadvantage of translation control is the availability 

of actuators. Only thrusters can realistically be expected to provide the forces required to control 

the base translation during SMM operations. Thrusters require fuel, making them prohibitively ex- 

pensive in this role. In addition, thrusters provide a much coarser level of control than joint motors, 

complicating efforts to achieve precise tracking. For these reasons, the added benefits of translation 

control are not worth the cost, making base attitude control the best alternative. 

The next lower level of the concept diagram offers the option of fixed or coordinated control. 

This refers to the choice between using control to fix the base in workspace or to integrate base 

motion with the manipulator motion so as to enable the accomplishment of a secondary task. The 

advantage of fixed control is that if it is done well, the manipulator arm may be controlled using any 

control technique available to terrestrial robots. If the base is fixed in attitude only, some kinematic 

constants must be weighted by appropriate mass ratios, but it is essentially equivalent to a terrestrial 



robot. There are several disadvantages to fixed control. It can require very high force/torque levels 

to maintain a stable platform. More importantly, the inherent redundancy of the base-controlled 

SMM is used completely in fixing the base, so that no secondary tasks are possible. By using 

coordinated control, the system is free to use the redundancy to optimize the control in some way. 

If coordinated control is chosen, there are a number of secondary tasks that can be considered. 

The strategy adopted in this work is to use the redundancy to alleviate the costs of base control while 

retaining the various benefits. The cost of base control is directly related to the choice of actuator. 

The three most viable actuator choices for attitude control are: 1) Thrusters, 2) Control Moment 

Gyroscopes (CMG), and 3) Reaction Wheels (RW). 

Thrusters represent the most straightforward option, but at the highest cost. Because they rely 

on external torques to control the base attitude, they are simple to incorporate into the dynamic 

model. However, thrusters use fuel which is a valuable nonrenewable resource for the system. It 

is generally best saved for tasks that cannot be performed without thrusters, such as orbit changing 

maneuvers. If thrusters must be used (perhaps to avoid redundant actuator systems), conserving 

fuel would be an important goal of the controller, second only to performing the commanded end- 

effector motion. 

Control moment gyroscopes (CMGs) are perhaps the most attractive option for attitude control 

[24]. CMGs use renewable electrical power, making their cost in spacecraft resources similar to 

the cost of using the manipulator joints. In addition, they offer a large torque capability for their 

size [4], The disadvantage of CMGs lies in their analytical complexity. The CMGs add significant 

nonlinear effects to the system dynamic model, due to the constant high rotational velocity of their 

rotors. Furthermore, a CMG cluster can experience singularity problems analogous to those of a 

manipulator arm. If CMGs are to be used for attitude actuation, avoiding cluster singularities is an 

obvious secondary task for the SMM controller. 



Reaction wheels offer a sort of compromise between thrusters and CMGs. Like CMGs, they 

use electrical power. However, they do not suffer from singularity problems, offering a simple 

torque mechanism similar to thrusters. The primary disadvantage of reaction wheels is that they are 

significantly more massive than CMGs for the same torque capability [4]. Reaction wheels large 

enough to produce the torques needed for SMM operations may be prohibitively massive, so they 

are not considered in detail in this work. It may be noted, however, that if reaction wheels were 

used, they allow greater freedom in choosing a secondary task, since neither fuel nor singularities 

are an issue in their case. 

1.2  Research Objectives 

The major goal of this research is to develop and demonstrate viable base attitude concepts for 

satellite-mounted manipulators. In support of this goal, several research objectives are identified: 

1. Explore alternative Free-Floating designs to eliminate singularity problems. (This objective is 

intended to ensure that no better alternatives to base attitude control can be found by simple 

extensions of singularity reduction methods used for terrestrial robots.) 

2. Demonstrate how base control can eliminate singularities. 

3. Develop an SMM controller using a workspace-based method that can follow a precise path. 

4. Incorporate a CMG cluster into the SMM dynamic model and controller. 

5. Explore the interaction of SMM and CMG cluster singularities. 

6. Develop methods for reducing the costs of base attitude control. 



1.3  Overview 

These central ideas of the introduction are expanded upon in the body of this thesis. Chapter 

2 provides an overview of the research to date applicable to the control of space robots. The kine- 

matics and dynamics of SMMs are discussed in Chapter 3. The chapter reviews some basic theory 

of fixed-base robots and spacecraft dynamics. Topics include forward kinematics, manipulator Ja- 

cobians, the Lagrangian method of deriving equations of motion, and the use of quasicoordinates to 

model spacecraft rotational dynamics. Chapter 4 introduces the Generalized Jacobian Matrix and 

dynamic singularities. Dynamic singularities are shown to depend only on the arm configuration 

and the inertial properties of the system. The effects of redundancy, prismatic joints, joint limits, 

and base control on dynamic singularities are investigated. Incorporating various combinations of 

these features leads to designs which eliminate or alleviate the problems caused by dynamic singu- 

larities. Chapter 5 investigates SMM control concepts. The advantages and disadvantages of full 

base control and base attitude control form the central focus of the chapter. A method for reduced 

base torque control using a task priority scheme is presented, and simulations show the superiority 

of the method over free-floating and earlier base control concepts. A Lyapunov controller is devel- 

oped and demonstrated for the joint space portion of the control problem. Chapter 6 analyzes the 

use of control moment gyros as the base attitude control mechanism. The equations of motion for 

the system are revised to include multiple CMGs, and the effects of singularities of CMG clusters 

are considered. A method of avoiding CMG singularities and SMM dynamic singularities is con- 

structed. Simulations demonstrate this controller for a three DOF arm mounted on a rigid satellite 

base with a three CMG cluster. Chapter 7 provides a summary, offers conclusions, and highlights 

the original contributions of this work. 



Chapter 2 - Review of SMM-Related Research 

Many researchers have investigated problems related to SMMs over the years. From the early 

analyses of multiple rigid body systems in the 1960's, through the technology and design studies of 

the Shuttle RMS in the 1970's and the emergence of space robotics as a sub-specialty of robotics 

in the 1990's, there is a rich body of literature from which to draw upon in the construction of a 

solution to the SMM control problem. 

Much of the recent work in the space robotics field concentrates on solving the problem of con- 

trolling the end-effector of a manipulator on an uncontrolled, or "free-floating" base. The earliest 

works address the kinematics coupled with the linear and angular momentum conservation equa- 

tions. Longman used the term "kinetics" to describe this motion [21]. In this paper, and in another 

by Lindberg, Longman and Zedd, the effects of the dynamic coupling of arm motion and base mo- 

tion were first illustrated [19]. They developed a straightforward vector-based approach to obtain 

the forward and inverse kinematic solutions. They noted the path-dependent nature of the problem 

which results in non-unique solutions. An additional effect of the path dependence is the need in 

any solution for an integration over the path to determine the final inertial position. They also con- 

sidered the kinematics when the base satellite has a fixed attitude, but is free to translate. 

Umetani and Yoshida used conventional robotic kinematic relations to derive the end-effector 

velocity in terms of the base velocity and the joint velocities [43]. Using the two momentum con- 

servation laws, they eliminated the base velocity to create the Generalized Jacobian Matrix (GJM) 

which maps joint velocities to end-effector velocity. The GJM is fundamental to much of the sub- 

sequent space robotics literature. In later papers, Yoshida and Umetani suggested a control method 

based on the resolved rate control algorithm [44], and explored workspace issues, introducing the 



term guaranteed workspace for the reduced area of total workspace in which all trajectories are free 

of GJM singularities. 

The third major work in kinematics of space robotics is the paper by Vafa and Dubowsky [45, 

46]. They proposed a virtual manipulator which has joint angles and end-effector position identical 

to the real SMM, but has an inertially fixed base at the center of mass of the SMM system, and link 

lengths dependent on certain mass ratios. This approach allows direct application of earth-based 

robotics algorithms to the virtual manipulator to solve the SMM kinematics. 

A recent paper by Saha [40] presented a generalized formulation of the Umetani and Yoshida 

approach. The paper expressed the kinematics and momentum equations in terms of an arbitrary 

"primary" body, and demonstrated that the choice of primary body can affect the numerical effi- 

ciency of a control algorithm. He concluded that for an end-effector tracking task, the end-effector 

should be the primary body if the base motion is not a concern. 

Nakamura and Mukherjee were the first to explore fully the nonholonomic nature of the free- 

flying SMM [30]. They rigorously proved that the angular momentum conservation equation is 

a nonholonomic constraint. They constructed a nonlinear state space model of a six-DOF arm 

mounted on a free-flying base and proposed a path planning algorithm based on a Iyapunov func- 

tion. In a later paper, they introduced the notion of nonholonomic redundancy [31]. This redundancy 

is evident by the ability of the SMM to reach the same inertial end-effector position using different 

joint angles. 

Reyhanoglu and McClamroch provided a rigorous mathematical treatment of the planar case 

for free-flying systems. They proved that multi-body systems must have at least three bodies for 

controllability, but in any system with three or more links, all joint configurations are accessible. 

They also proved that no smooth feedback law will stabilize the system [38]. However, they pre- 

sented an open-loop control law for the system using techniques from differential geometry [39]. 
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Their controller first moves the planar robot to the required joint angles, and then uses cyclic motion 

to drive the base body to the desired orientation. Their proof is for free-floaters, and based upon 

formulating the problem completely in joint space. The paper does not consider how to translate 

this result to a workspace controller. 

Papadopoulos and Dubowsky were the first to investigate singularities of SMM systems [35] 

[7]. They noted that the system is physically unable to move in some direction when the GJM 

becomes singular. Citing the dependence of the singularities on the inertial properties of the system, 

they described this type of singularity as a "dynamic singularity." They showed that these dynamic 

singularities do not depend on the base position or orientation, and are eliminated when base attitude 

is fixed. They demonstrated that inertial workspace can be divided into regions where dynamic 

singularities are possible and not possible, introducing the terms Path Dependent Workspace (PDW) 

and Path Independent Workspace (PIW), respectively, to describe these regions. 

The works cited above all concentrate on the kinematics of SMMs. Analysis of the dynamics 

of SMMs and specifically the generation of equations of motion (EOM) is less prevalent in the 

robotics literature. Yoshida and Umetani mentioned the problem in Ref. [51], where they wrote an 

expression for kinetic energy in terms of joint velocities (again using momentum conservation to 

eliminate base velocity) and then suggested that Lagrange's equations will give the EOM. Luo and 

Sakawa [23] developed the same idea in more detail, using the result in a joint torque controller 

based on resolved acceleration control. Mukherjee and Nakamura briefly considered the EOM, 

describing a novel method using the Recursive Newton-Euler algorithm common for earth-based 

robots with the momentum equations incorporated as acceleration constraints [26]. 

Earlier papers, by dynamicists rather than roboticists, provided dynamic analyses of multiple 

rigid bodies that are applicable to SMMs. Hooker and Margulies [14] developed the first attitude 

equations for an «-body satellite using an Eulerian approach. Their only significant assumption 
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was that the bodies form an "open topological tree" (i.e. no closed loops). Their method elimi- 

nated constraint forces at the joints, but the EOM contain constraint torques resulting from less than 

three-DOF at the joints. Hooker [12] extended the method to include an arbitrary number (0-3) of 

rotational DOF at each joint, eliminating constraint torques from the EOM. Conway and Widhalm 

further modified the Hooker-Margulies equations by incorporating a translational degree of free- 

dom at a joint [5]. In Hooker's last paper [13], he abandoned most of this previous work in favor of 

an approach which uses a point on a specified "base body" rather than the system center of mass 

as the main translational point of reference for the system. This new method resulted in a some- 

what simpler notation forthe EOM. Other authors, Quinn [37], Hughes [15], Likins [18], and others 

provided many alternatives for generating EOM. 

In contrast to the significant body of literature on free-flying space robots, the studies of 

controlled-base SMMs are few in number. There were, as mentioned above, some discussions of 

the kinematics of SMMs with fixed attitude in Refs. [20] and [45], but variable attitude control was 

not considered. However, some attempts to address this problem exist. Alexander and Cannon [2] 

developed a controller for the SMM that uses known information about the base controller forces 

and torques in the generation of commands for the arm joints. Oda [32] suggested the reverse phi- 

losophy, proposing a coordinated control architecture in which the effects of the arm motion are 

predicted and compensated for by the base attitude controller in a feedforward mode. If the current 

attitude is too far from a nominal position, the base attitude controller restricts the arm motion until 

the spacecraft attitude is back within a specified range. In both of these schemes, the satellite and 

the manipulator were viewed as distinct systems each with their own controllers. Each method was 

designed to handle undesirable controller interactions which can result from this control concept. 

Spofford and Akin [41] combined the manipulator and satellite base into a single system. They 

noted that using base control with arm control creates a redundant system. They demonstrated a 
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straightforward method of resolving this redundancy which tends to rely heavily on the base actu- 

ators to achieve the desired end-effector motion. They presented a method for lowering the use of 

base actuation by dynamically blending the straightforward method with another control scheme 

which uses only the arm joint actuators, but includes base velocity feedback to compensate for the 

base reactive motion. They weighted the proportion of each control scheme's contribution to the 

final control by means of a potential function. 

Wee and Walker offered an analysis of the dynamics of an SMM integrated with a reaction 

wheel controlled base. In Refs. [48] and [49], they described the kinematics of the base by a mass- 

less virtual manipulator (not the same virtual manipulator as Wa and Dubowsky [46]) which has 

three prismatic joints for base translation and three revolute joints for base orientation. Using a 

Lagrangian approach they derived equations of motion and showed that the revolute joints on the 

virtual manipulator are controllable by the reaction wheel (FW) torques. The FW torques are in the 

body frame while generalized torques associated with the virtual joints for orientation are in three 

different reference frames. This creates a need for some complicated transformations in the EOM, 

and introduces a coordinate-based singularity (similar to an Euler angle coordinate singularity) into 

the EOM that does not exist in the real system. 
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Chapter 3 - Kinematics & Dynamics of SMMs 

3.1  Kinematics of Fixed-Base Manipulators 

The kinematics of robots is generally divided into three main categories: forward kinematics, 

inverse kinematics, and velocity kinematics. Forward kinematics is the problem of determining the 

position of the end-effector (or other point of interest on the robot) in terms of the joint variables. It 

is a straightforward calculation, and the most significant part of any solution is the notation. A com- 

mon approach is the use of a homogeneous transform for each DOF, using matrix multiplication as 

the rule of composition [27,42]. Inverse kinematics is a much more difficult problem, and for some 

robots no closed form solution exists. When closed form solutions can be found for a particular ro- 

bot geometry, the solution is often not unique. Because of the difficulties associated with the inverse 

kinematics, many analyses of robot kinematics are done at the velocity level. The fundamental tool 

is the manipulator Jacobian, which maps joint velocities to end-effector velocities. The Jacobian is 

derived from the forward kinematics and is well suited for both analysis and computation. 

To construct the manipulator Jacobian, begin with the forward kinematic relation 

re = m (1) 

where re is the position vector of the end-effector in inertial space components and / (6) is a non- 

linear function of the joint variables, 0 e W1. Differentiating both sides with respect to time gives 

the velocity relation 

re = ve = ^6 = Jp(0)<> (2) 

where Jp is a 3 x n matrix that is a function of the manipulator's configuration. Both Eqs. (1) and 

(2) relate work space to joint space, but the Jacobian equation is linear with respect to the velocities. 

As such, it is easily inverted, 

0 = J-1(9)ve (3) 
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to provide the necessary joint velocities for a desired end-effector velocity. The method of inversion 

can vary depending on the particular circumstances. In addition to the standard matrix inverse, 

there are a host of other inverses used in the robotics literature, the most common being the Moore- 

Penrose generalized inverse or pseudoinverse. When n = 3, the standard matrix inverse will serve 

as long as Jp (6) is nonsingular. However, there are configurations of the robot that will be singular 

and many studies are devoted to methods of handling singularities. For robots where n ^ 3 there 

are additional concerns. When n < 3, there may not be any solutions, and when n > 3, there may 

be zero, one, or infinitely many solutions. In the latter case, the robot is said to be kinematically 

redundant, and many schemes exist for taking advantage of redundancy. 

In this work, most of the examples assume that only end-effector position is of importance. 

Thus for planar cases, re will be 2 x 1, and for spatial cases, it will be 3 x 1. However, in some 

developments where retaining the generality does not add unnecessary complexity to the equations, 

both the end-effector position and angular orientation are considered. In these instances, re is 6 x 1, 

and the Jacobian definition is extended to include angular orientation in addition to position, so that 

Eq. (2) becomes 

XWm]^J'^ (4) 

Efficient methods for constructing the manipulator Jacobians can be found in most robotics texts 

(see for example Refs. [29,42]). 

3.2  Kinematics of an n-Link SMM 

For satellite-mounted manipulators, the problem of describing the system kinematics is quite 

similar to the fixed-base manipulator. The major difference is that the forward kinematics now 

must include the position and orientation of the base as well as the manipulator configuration (joint 
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Figure 2. Satellite Mounted Manipulator (SMM) 

angles). This makes solving the inverse kinematics problem more difficult, prompting our use of 

the velocity kinematics relations. 

In the next chapter, the system momenta will be shown to play an important role in the tra- 

ditionally kinematic problem of relating end-effector motion and joint motion. This has led to a 

number of different formulations for the kinematics, with some authors writing the equations in ref- 

erence to the system center of mass and others writing them with respect to the spacecraft base. 

Saha [40] developed general equations which describe the system with respect to an arbitrary pri- 

mary body, which can be chosen depending on the expected task. Since controlling the base motion 

will often be an important secondary consideration to controlling the end-effector, a formulation 

which directly includes base coordinates is used here. 

Consider an SMM, shown in Figure 2, modeled as n + 1 rigid bodies connected in series by 

n revolute or prismatic joints. Reference frames are established as shown in the figure. Ti is the 

inertial frame, established arbitrarily. JF0 is fixed to the satellite (body-0) at its center of mass and 

aligned in the principal directions of the body. Each frame, Ti, i = 1,2,..., n, is fixed to body i 

with the choice of origin and orientation depending on the particular arm design, according to the 
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Denavit-Hartenberg convention [6]. The position of the end-effector re can be described by the 

forward kinematics equation 

re = /(ro,ß,0) (5) 

where r0 is the inertial position of the satellite base's center of mass1, ft is the base orientation (the 

orientation of To with respect to Ti), and 9 is the set of arm joint angles. From Figure 2, one can 

write the vector expression 

re = r0 + rg (6) 

where rg is the position of the end-effector relative to the base center of mass. The inertial time 

derivative of Eq. (6) provides the corresponding velocity relation, 

°d 
fe = fo + w0xrg + — (rg) (7) 

where u>0 is the base angular velocity and °d/dt (•) indicates differentiation with respect to frame 

To, rather than the inertial frame, Ti. This equation can be written in matrix form as 

re = JpVvo + JpuVo + Jpe9 (8) 

where re is the inertial velocity of the end-effector in Tj components, v0 is the inertial velocity of 

the base in Ti components, w0 is the angular velocity of the base in To components and 9 are the 

joint velocities. The Jacobians, Jpl) ,Jpu and Jpe are 

Jpv     =     f^3x3 

Jpu,     =     -R°iTe0X (9) 

Jpe   =   RiJp 

where U3x3 is the 3 x 3 identity matrix, Ftf is the rotation matrix from the Ti frame to the To 

frame, r„x is the skew-symetric matrix formed from the end-effector position relative to the base in 

1 Throughout this work, the use of bold variables is restricted to vectors or dyadics where no specific component 
frame is implied in the equation. In equations where vectors or matrices are in component form, they are not bold and the 
reference frame is indicated with the first usage of the variable. 
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TU components, and Jv is the kinematic manipulator Jacobian for a fixed-base arm, mapping joint 

velocity to end-effector velocity in the JF0 frame. 

In the most general case, r e would include the orientation of the end-effector as well as position. 

Then the end-effector velocity can be given by 

(10) rR = 
uP 

where ve is the translational velocity of the end-effector relative to the inertial frame, expressed in 

the inertial frame, but u>e is the angular velocity of the end-effector relative to the inertial frame 

expressed in the spacecraft body frame. Equation (8) becomes 

re   =   JVVQ + J^UJQ + Je0 

pv 
V0 + 

pui 
W0 + 

JpS 

JaB 
9 

where Jpv, JpuJ, and Jpg are defined in Eq. (9), and Jav, Jau, and JQS are given by 

Jav    =    03x3 

Jaw    =    U3 

JQ6     —     Ja 

x3 

(ID 

(12) 

(13) 

(14) 

(15) 

In later chapters, Eq. (11) is occasionally used interchangeably with Eq. (8). The meaning should 

be clear from the definition of the end-effector velocity re given in the particular case. 

3.3  Equations of Motion of an Open Chain Fixed-Base Manipulator 

For a dynamic system with n degrees of freedom (DOF), the motion of the system can be 

determined by the n differential equations known as Lagrange's Equations, 

where L is the quantity known as the Lagrangian. The Lagrangian is the difference of the kinetic 

and potential energies of the system, L = T — V. The qk are known as generalized coordinates, 

and can be any set of coordinates that uniquely determine the state of the dynamic system. The Qk 
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are known as generalized forces, and represent forces applied to the system in the "direction" of 

qk. This method of determining the equations of motion is a commonly used method in the robotics 

literature [27,42]. 

A typical robotic arm is comprised of a series of links connected by actuated joints in an open 

chain (i.e., there are no closed loops of links). For this type of robot, known as an open chain ma- 

nipulator, the joint angles, 9k, are anatural choice forthe generalized coordinates. To determine La- 

grange's equations of motion forthe robot, one begins by writing the Lagrangian of the manipulator 

in terms of the generalized coordinates, 9k. The kinetic energy may be written in matrix form as 

1 JL 
T = ^J2{mkVkvf+ÜJkh^k} (17) 

where link k has mass m^, center of mass velocity vk, angular velocity uk, and body-fixed inertia 

Ik- A Jacobian, Jk, may be defined for link k which relates the velocity of link k to joint velocities 

in much the same way as the manipulator Jacobian relates end-effector velocity to joint velocities 

(see Eq. (4)). The defining equation is 

Jpk 

Jak 
9 (18) :Jk(9)9 = 

Substituting Eq. (18) into Eq. (17), the total kinetic energy of the robot is given by 

i    n 

T = 2 E {^k9TjJkJpk9 + 9TjJkIkJak9} (19) 

Now 9 can be brought outside the summation giving 

T = \9TM{9)9 (20) 

where 
1 

M (*) - 2 £ {mkJJkJPk + JJkhJak) (21) 

The matrix M (9) is known as the manipulator inertia matrix. For terrestrial robots, a potential 

energy term is generally included in the Lagrangian to account for gravitational effects. However, 
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for an SMM with rigid links this term can be neglected2, so the Lagrangian, L, is simply the kinetic 

energy, T, as given in Eq. (20). 

Before applying Lagrange 's Equation, Eq. (16), it is convenient to switch to index notation 

(see Appendix A for a review of this notation). The Lagrangian becomes 

L = ^Mij{9)ei9j (22) 

Then the Lagrangian in Eq. (22) may be substituted into Eq. (16). Performing the differentiation 

gives the first term 

(S~)=1 (Mijöj)=kijbj+Mijdj (23) 

and the second term is 

dt \d9i. 

dL      1dMk, 
d6i      2  d9i 

The time derivative of the manipulator inertia matrix, M^, can be written as 

0k0j (24) 

Mij (Ö) = ^-9k (25) 

Substituting Eqs. (23)-(25) into Eq. (16) gives 

Mi&+^wt'6^ - Y^r'e^=Qi (26) 

The second two terms can be combined, giving 

Mij9j + Vi^ejOk = Qi (27) 

where 

_l(dMij     dMik     dMjk\ 
lijk ~2\d9k  

+ "dfj        W) C   ' 

The functions, Fijk, are known as the Christoffel symbols corresponding to the inertia matrix, 

Mij. Note that T cannot be written in matrix form, prompting the use of index notation. To revert 

to matrix form, it is customary to define a C(6,9) matrix by 

Cij(9,9) = rijk9k (29) 

2 The gravitational effects are negligible for the SMM because the entire system is in free-fall (orbit) around the earth, 
providing a so called "zero-gravity" environment The gravity-gradient effect, which is often included in the spacecraft 
attitude analyses, is also negligible on the expected time scale of SMM operations. 
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This definition of C is not unique, but is the most common choice due to the compact form of rep- 

resentation with the Christoffel symbols and some other useful properties which appear in stability 

proofs. Unlike the inertia matrix, the C matrix is not symmetric in general. 

Using the M and C matrices as defined, the equations of motion for a fixed-base manipulator 

can be written 

M(e)'e + c(e,e)e = T (30) 

where Q is replaced by r, the usual notation for the joint torques. 

3.4 Lagrange's Equations Using Quasi-Coordinates 

Lagrange 's equations are written in terms of generalized coordinates <& which are assumed to 

be true coordinates in the sense that if the velocities q\ are known functions of time, they can be 

integrated to give the coordinates <&. For spacecraft, equations of motion are often written in terms 

of body angular velocities since the inertia matrix for the spacecraft is constant in the body frame. 

Unfortunately, these angular velocities cannot be integrated to obtain true orientation coordinates 

of the spacecraft. Therefore, they cannot be used in the normal form of Lagrange's equation. How- 

ever, the "quasi-coordinate" form of Lagrange's equation extends the powerful Lagrangian method, 

allowing it to handle this problem. The derivation below is done in index notation, but generally 

follows the one found in Meirovitch [25]. 

First, the angular velocity is written as a linear combination of the derivatives of a set of true 

coordinates 

ui = Aijqj (31) 

where A = A(q). A common choice for q is Euler angles3, but this method is not restricted to this 

representation. When the matrix A is nonsingular, this relation can be inverted to give 

qi = BijUjj (32) 

3A discussion of Euler angles, as well as alternative orienation parameters, can be found in Ref. [15]. 
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where Bij is determined from the equation 

BijAjk = 8ik (33) 

where 8^ is the Kronecker delta (see Appendix A) 

The kinetic energy, T = T(q, q), can then be written in terms of the angular velocity, u. This 

new function is denoted asf = f(q,u>(q,q)). This expression replaces the former expression for 

kinetic energy in Lagrange 's equation (16). The first term becomes 

d (8T\       d  (df(q,u(g,q))\ _ d ( df duA _ ± ( 8T_      \ 
dt\dqk)       dt\ dqk )       dt\dUidqk)       dt\d^k) 

d  f&T   .    \        d  (&T\   .      ,   df d . 

since A is a function only of the coordinates q, its time derivative can be expressed by 
d r A   \      dAifc ,       dAjk ,,,, 

Jt{Aik) = ^q-qJ = ^q-BjlUJl (36> 

The second term in Lagrange's equation becomes 

dT = df(q,u)      dfjq^duj = df_ + &TQMi_B.m (37) 

dqk dqk duJi      dqk      dqk      duJi dqk    
3 

Combining the terms and multiplying both sides by Bkm gives the quasi-coordinate form of La- 

grange's equation, 

d ( df\      8fdAik Of ,. 
17   ä—   + « ^—BjiuiBkm - Bkm-x- V*) 
dt \dujmj      dcoi dqj oqk 

dTdAij 
~r T-^BjiUiBkm    =    BkmQh 

du>i dqk 

After much algebra, the expression becomes 

d / of \ df df _ (   . 
+ Wj-—eijm - Bkm-— = ±>fcmVfc V?) 

where eijm is the alternator function, or unit completely skew-symmetric third-order tensor, as de- 

fined in Appendix A. Now writing Eq. (39) back in matrix notation, this expression is 

'    ±(E.)+^.B^ = BrQ (40) 
dt \düjj du dq 
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When the kinetic energy does not depend on the generalized coordinates, then dT/dq = 0, 

and the expression can be further simplified to 

When T = |wT Iu>, this translates directly to the familiar Euler equation for rigid bodies, 

iw + wx/w = M (42) 

However, when df/dqk ^ 0, Eq. (39) can quickly become cumbersome in practice. Quinn [37] 

noted a useful relation for dealing with this term as it arises in rotating space structures. In these 

problems, the dependence of kinetic energy on orientation enters only via the rotation matrix be- 

tween the inertial frame and the body-fixed frame. These terms in the expression for f (denoted 

here by T*) are often of the form 

T* = aTRTb (43) 

where a is a vector in the body-fixed frame, b is a vector in the inertial frame, and R is the rotation 

from the body-fixed to the inertial frame. Then the last term in Eq. (39) can be written 

8T 9 (RT).. 
Bkmj+-   =   BfcmOr-ij-% (44) 

dqk 9qk 

=   aieiim[RT}..l>j 

or in matrix notation, 

BT^ = a*RTb (45) 
8q 

This equation, used with Eq. (39), provides a systematic method of determining the equations of 

motion associated with the unconstrained rotation of a body in space. The equations associated with 

true coordinates are still found with the original form of Lagrange's equation, and are unaffected by 

the choice of representation for kinetic energy (T (q, q)or f (q, u>)). 

22 



3.5 Equations of Motion of an n-Link SMM 

The equations of motion for an n-link SMM can be generated by the Lagrangian approach, 

using the quasi-coordinate form for the equations associated with the base angular motion. The goal 

is to obtain equations in a form similar to the equations of motion for the open-chain manipulator, 

Eq. (30), developed in Section 3.3. The derivation below draws on elements ofthat section as well 

as portions of the discussion of quasi-coordinates in Section 3.4. 

The first step is to write the Lagrangian, which for the n-link SMM with rigid links is the total 

kinetic energy of the system. The total kinetic energy can be expressed as the sum of the kinetic 

energy of each body in the system, 
n 

T = Y,Ti (46) 
i=0 

The kinetic energy of body-i is 

Ti = -jmiVi ■ VJ + -Ui -li-Ui (47) 

where Vj is the velocity of the body's center of mass, w; is the body's angular velocity, mi is the 

body's mass, and I; is the body's inertia tensor. Denoting the linear and angular velocity of the 

satellite base by vo and u?o, respectively, expanded expressions for the velocities of the links may 

be written, 

vj=v0 + w0xrj + vj (48) 

ui = w0 + w0 (49) 

where r0, v0, and w0 are the quantities associated with link i with respect to the satellite base. The 

relative position vector, r0, is shown in Figure 3. 

Substituting Eqs. (47)-(49) into Eq. (46), and expanding, the kinetic energy is 

T   =   -m0v0 • v0 + -wo • Io • wo (50) 

+ Ef \rrii (v0 4- w0 x r0 + v0) ■ (v0 + w0 x r0 + v0) 1 
i=1l +i(wo + w0)-Ii-(w0 + w0) / 
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Figure 3. Defining the position of a link relative to the base center of mass. 
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Expanding the terms in the summation and writing in matrix form, this expression becomes 

1 1 1   n 

T   =   -m0vjv0 + -UJQIOüJO + — ^^ {m; [t^o + v^v^ 

-<4ri?r£uj0 + 2v1>R
0

Ivi (51) 

-2vjR°I4
xuj0 + 2uJ^ri

0
xvi 

+ u!Q RQURQ WO + w0 RQURQ U)Q + 2U>Q RQIIRQ W0 J 

where v0 is in Ti components, LO0, W0, r0, and v0 are in FQ components, and the U are in T% com- 

ponents. The link velocities relative to the base, i>0 and w0, may be written in terms of the joint 

velocities using Jacobians as in Section 3.3. That is, 

..i      & 

UJQ      — 

Jpi(0)9 

Jai(ö)Ö 

Substituting Eq. (52) into Eq. (51), gives 

1 1 i   n 

T   =   -m0Vov0+ 2^0^0+2 X) \mi [vouo + ö  J^Jpi& 
i=l 

-u>UoXriJ
xu0 + 2v^R0

IJpie 

-2vlR°Iri*uo+2ulr™Jpi6 

+ u>0 RQIIR^ UIQ + 0  J^R^IiR^ Jai6 + 2u>0 RQ^RQ Jai9> 

Defining a column matrix of the generalized velocities 

wo 

the kinetic energy can be written 
9 

T=-qTM(q)q 

where 

M(q) = 
Mv MVÜJ Mv8 

Mju Mu Mue 
Mje    Mje   Me 

(52) 

(53) 

(54) 

(55) 

(56) 
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Mv = mo(73X3 + ^2miU3x3 (57) 
i=l 

n 

= Io + Yl {m*F - mirier? } (58) 

n 
M* = E {m*JPV*>* + 4*o£*0T«^} (59) 

i=l 

n 

Mw = -^mißKx (60) 
i=l 

n 

M„e = J2miR°iJPi (61) 
i=l 

Mwö = £ {mi^x Jpi + 4/4T Jai} (62) 

Using this expression for the kinetic energy of the system, Lagrange's equation can be applied 

to obtain the equations of motion. As stated earlier, the goal is to put the equations of motion into 

the form 

M(q)q + C(q,q)q = Q (63) 

Where M(q) is the inertia matrix defined above, C(q, q) is the matrix containing all of the Coriolis 

and centrifugal terms, and Q is a vector of the generalized forces. 

In the development of the open chain manipulator EOM, the application of Lagrange 's equation 

led to an expression of the C matrix as a function of the inertia matrix and its derivatives. This 

function was compactly described using Christoffel symbols. This compact representation is not 

possible for the n-link SMM because the quasi-coordinate form of Lagrange's equation must be 

used to derive some of the EOM. While the terms represented by the product, C(q, q)q, are unique, 
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the definition of the C matrix is not. In the remainder of this section, one convenient representation 

of the C matrix is developed. 

First, it is useful to note that the kinetic energy can be written in terms of the inertia submatrices 

defined in Eqs. (57)-(62) as 

T   =   -IvJ Mvv0 + v^MVUJüJo + v^MveÖ 

+u>o MuvVo + WQMUUO + UIQM^O (64) 

+ erMevv0 + eJMeuJWQ + e Mee\ 

It is convenient to partition the C matrix in the same manner as the inertia matrix, 

C(q,q) = 
Pdv     CQU     CQ 

(65) 

Recall that, unlike the inertia matrix, the C matrix is not generally symmetric. 

For the base translation equations, apply the standard form of Lagrange's equation (recall that 

there are no potential energy terms, so L = T), 

dt \dvoJ      dro 

The second term on the left hand side is zero, as an examination of the inertia matrix definition (Eqs. 

(57)-(62)) reveals no dependence on the base position. The first term can be expanded as 

=   Mvv0 + Mvcüü>o + Mv09 + Mvv0 + Mvuu>o + Mv09 

The first three terms are incorporated into the first term of Eq. (63), while the second three terms 

are incorporated into the second term (the C matrix term). It is apparent from the equation above 

that a convenient way to form the C matrix (recall that it is not the only way) is to define 

Cv   =   Mv 

Cvu   =   MVUJ (68) 
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Cyd =        MVQ 

The inertia matrix derivatives can be found by differentiating Eqs. (57), (60), and (61), 

Mv = -^(mTU3) = 0 (69) 

d 
dt MEK} (70) 

n 

■4(EW) dt % 

= -ßKtK}-ß/E(m'Ml 

=   R^j^miJ.i + R^^^e (71) 

In the above equations, the relation Ä° = ä°WQ 
nas been use<^- ^his identity is derived in Appendix 

B.l. Also, the notation in the Mvg equation is somewhat ambiguous, since partial derivatives of 

matrices with respect to vectors are not matrices, but 3rd order tensors. In this equation, and in 

subsequent equations where this notation is used, the intended meaning is defined in terms of index 

notation as 

9Mve-n\    A d(Mvg)iid 
de   ){j       aek 

In practice, taking partial derivatives of inertia matrix partitions with respect to 6 is quite tedious, 

and can be delegated to symbolic software such as Mathematicct for reasonably sized systems. 

Next, the EOM associated with U>Q can be determined using the quasi-coordinate form of La- 

grange's equation, 

d ( &T\       x / 8T \   ■    8T 
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The first term is 

c^fdT\ 
dt 

The second term is 

and the third term is 

f dT\ d / .\ 
(jW    =   "dt [MuJvV° + M^° + M^°) (74) 

=   Mwio + MUCJQ + Mwde + MuvVo + M^u0 + Mw90 

>o (g^J = wo (MWVO + Muuo + M^ej (75) 

[UQMWVO + ÖTM6vvo) (76) 
dT d 

ÖÄ°T        ÖÄ°T 

Using the relation in Section 3.3.4, it can be shown that Eq. (76) becomes 

dT 
äßör    =    (woX>4xj   Ä?T^o (77) 

/ . i 

+ 

Then the uiQ row of the C matrix may be defined by 

Cuv   =   Mwv+u>£Mwv 

(n n \  x 

J^miJpiö-J^mir5xwo)    #/T (78) 
i=l i=l / 

C^e   =   Mue+u^Mue 

The inertia matrix derivatives are 

In Eq. (78), the quantity that results from multiplying the third term in the expression for Cwt, by 

v0 will always be zero when the system linear momentum is zero. Since this is the assumption 

throughout this work, we show this below. 
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Using Eqs. (60) and (61), the third term in Eq. (78) multiplied by v0 can be rearranged as 
(n n \  x 

Y^rriiJpiÖ - J2miroXujo J    B-Vvo = [F^M^UQ + tf}TMv99) * R°Tv0       (80) 

This can be further manipulated as 

(R-VM^üJO + R^M^YR^VO   =    (ä?
T(MM + Mve'e)y R<>Tv0        (81) 

=   Ä?T [MWU0 + Mvdö} * VQ (82) 

Now if the linear momentum of the system is zero, then (from Section 3.3.6) 

Mvv0 + MVWUJ0 + Mv69   =   0 (83) 

MVUJuo + Mve9   =   -Mvv0 (84) 

Substituting Eq. (84) into Eq. (82), gives 

RY (jl^wo + Mve^j XvQ   =   -Ä?T (Mvv0)x v0 (85) 

=   -rrirRfv^vo (86) 

=   0 (87) 

Therefore, throughout the rest of this work, since we will always assume the system linear momen- 

tum is zero, we can define Cwv as just 

Cwv = Mwv + wfiMw (88) 

Finally, the EOM associated with 9 can be determined using the standard form of Lagrange's 

equation, 

d fdT\     dT 
dt\de)-J9=Qd <89> 

The first term is 

±(dT 
dt \QQ 

(dT\ d / , .v 
\d6j    =   Jt\ M9vyo + Me^o + Me9) (90) 

=   Mevvb + M9lJJüo + Me9 + M0vvo + M9wu>o + Me9 

The second term is 

dT       TdMvu> TdMv6.     1   TdMu T9MU$-      l-rdMa- - = VQ —m + vr_9 + -ul—uo + „T—jä* + -0  -±e        (91) 
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Then the 6 row of the C matrix can be defined 

Cgv     =     Mgv 

C*»   =   Me„-v0 — -ro— (92) 

_       • jOM^ T-aM^        luTdMg 
Ce   -   Me-v0 — -u0 — --9 — 

where 

Mgv =  (MV6) 

Me«   =   (MJ) (93) 

M,   =   -git 

In general, the M and Cmatrices are fully populated (see Appendix C forthe M and Cmatrices 

of atwo-link planar SMM), so it is clear that there is significant interaction between the arm motion 

and the base motion. Understanding and controlling this interaction is central to all SMM control 

strategies. 

At this point we have constructed the equations of motion in the form 

Mq + Cq = Q (94) 

where q has only been defined in terms of its first time derivative, the generalized velocities q. 

In the case of v0 and 0, two of the three parts that make up q, direct integration can provide the 

base position, r0, and the joint positions, 9. However, u>0 cannot be integrated to find the base 

attitude. For this, some form of true attitude coordinates, ft, must be chosen and related to angular 

velocity. We chose to use Euler parameters (commonly referred to in spacecraft attitude control as 

quaternions) to avoid the singularity problems associated with Euler angles. Then the equations of 
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motion given in Eq. (94) can be written as the first order state equations 

xx = 
u 0 0 1 
0 A (ft) 0 
0 0 U 

X2 (95) 

±2 = M'1 (Q - Cx2) (96) 

where x\ represents the position, orientation and joint position (ro, ft, 6), and xi represents the 

corresponding velocities (ro, w, 9). The 4x3 matrix A (ft) is given by 

*-3 
sx +rjU 

(97) 

where the Euler parameters are ft = (e, rj). For more information on Euler parameters, see Hughes 

[15]. 

3.6  Momenta of an n-Link SMM 

In the analysis of a dynamic system, there are generally a number of fundamental quantities 

which provide special insight. One such quantity, the system kinetic energy, was used in the previous 

section to obtain equations of motion using Lagrange's equation. Two other important quantities 

are the linear momentum and angular momentum. The momenta are particularly useful when no 

external forces or torques are applied to the system. In this case, the momenta remain constant while 

the system is in motion. These constants of the motion may in some cases be used to reduce the 

dimension of the analysis. This section will derive expressions for the momenta in a form similar 

to the SMM kinematic equations (see Eq. (8)). These expressions, also linear with respect to the 

generalized velocities, simplify the discussion of singularities and controllers in the subsequent 

chapters. 

3.6.1   Linear Momentum 

For a single rigid body, the linear momentum of the body is the product of the body's mass and 

the inertial linear velocity of the body's center of mass. The total linear momentum of an n-link 
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SMM is the sum of the linear momentum of each body, 
n 

p=^miVi (98) 
i=0 

Pulling the term corresponding to the base out of the summation, and expanding v* in the subsequent 

terms using Eqs. (48) and (49) to show explicitly the dependence of the link velocity on the base 

motion, Eq. (98) becomes 
n 

P = m0v0 + J2mi (vo + w0 x r0 + v0) (99) 

This expression can be put in matrix form by writing vo in Ti components and u>o, rfj, and v0 in 

Fo components, following the convention of Sections 3.2 and 3.5. Then the linear momentum is 
n 

p = m0v0 + ^mi (v0 + Ä?w£r0 + B^v0) (100) 
i=\ 

The relative velocity of link i, v0, can be expressed in terms of the joint velocities, 8, using the link 

Jacobians introduced in Eq. (52). Finally, VQ, UJQ, and 6 can be moved outside the summation to 

obtain the desired expression for the system linear momentum, 

p = Pvv0 + PWLO + Pe'O (101) 

where 

Pv   =    Imo + ^mi J U3x3 = mTU3X3 

n 

Pw   =   -R^irmri?} (102) 
i=l 

n 

Pe    =   I$Y,{rniJpi} 
i=\ 

3.6.2   Angular Momentum 

An analogous expression for the angular momentum of the system can be derived in a similar 

fashion. For a single rigid body, the angular momentum is formed by integrating the cross product 

of position and inertial velocity for each differential mass element in the body. The total angular 
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momentum can be expressed as the sum of the angular momentum of each body, 
n 

h = J2imi(Ti x v*) + J; •w*} (103) 
i=Q 

As before, pull out the base term and expand the remaining terms, 

h   =   m0 (r0 x v0) +10 • w0 (104) 
n 

+ ZKrni((r° + ro) x (vo + w0xr0+v0))+Ii- (UJO+WO)} 

At this point, one could choose appropriate coordinate frames for each variable, introduce the joint 

velocities using the Jacobian relations, and create a matrix expression similar to Eq. (101). However, 

before proceeding with these steps, Eq. (104) can be significantly simplified, provided the linear 

momentum of the system is assumed to be zero. This assumption will be made in every case in which 

the angular momentum is of interest.4 To make the simplification, first collect terms containing ro 

h   =   r0 x I m0v0 + ^ {m* (v0 + u>0 x r0 + v£)} j (105) 
i=l 

n 

+Io • wo + Y2 imi (ro x (vo +u>o x r0 + v£)) +1* • (u>0 + w0)} 
i=l 

Comparing Eq. (105) with Eq. (99), it can be seen that the quantity crossed by ro in the first term 

is the system linear momentum, p. The remaining terms are the angular momentum of the system 

with respect to the satellite base, and can be denoted by ho. Then Eq. (105) becomes 

h = ro x p + ho (106) 

Since p = 0, the first term of Eq. (106) is zero, and the system angular momentum is 
n 

h = h0 = I0 • wo + 2 {mi (ro x (vo + wo x r0 + v0)) +1* • (u>0 + w0)} (107) 
i=l 

4If there are no external forces or torques, the linear and angular momentum are constant Neglecting environmental 
effects, this is the expected condition for free-floating SMMs. Assuming the SMM begins at rest, both momenta will be 
zero throughout the completion of a given task. However, in real systems environmental forces and torques are sure to 
exist, so some means of periodically nulling momentum must be available. For SMMs where the base is controEed, the 
linear and angular momentum may not remain zero, but in this case the expression for angular momentum is not used (see 
Chapters 4-6). 

34 



Now writing this expression in matrix form, again with v0 in Ti components, u;0, IQ, U>O> and vj 

in TQ components, and I* in T% components, 

+ £{/$Jii$T4+wfi>j} (108) 

Substituting for wj, and v*Q using Eq. (52) to put the last summation in terms of 6 gives 

h = Hvv0 + Hwu + #e0 (109) 

where 

Hv   =    rErrntfJBF 

Hul   =   /o + 2{4WT-^oX^oX} (11Q) 
i=l 

n 

The momenta of the system are closely tied to the equations of motion of the system. The 

matrices used here to define the momenta are exactly equal to the corresponding submatrices of the 

inertia matrix used in determining the equations of motion. That is, 

Pv   =   Mv 

Pu   =   MVÜ) 

Pe   =   Mve (111) 

Hv   =   M&V 

Hu   =   Mu, 

He   =   MWB 

Generally, when writing the system momentum, we use the P and H matrices, and when referring 

to the equations of motion, we use the M matrices. 
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3.7 Summary 

In Chapter 3, we established the framework for our analysis of SMM control. The kinematic 

equations for a fixed-base manipulator were developed to show the relation of the end-effector 

motion to the motion of the arm joints. These equations were extended to the kinematics of an n-link 

SMM, introducing the effect of base motion. Next, the equations of motion were derived using an 

energy approach, first for the fixed-base manipulator and then for the n-link SMM. The spacecraft 

attitude equations were developed using a quasi-coordinate form of Lagrange's equations.5 Finally, 

expressions for the total linear and angular momenta of an n-link SMM were derived. The equations 

of motion are used as the plant model in the controller and simulation developments of Chapters 

5 and 6, and the momentum expressions are key to the development of momentum-constrained 

Jacobians in Chapter 4. 

5This was the first derivation to include the body frame components of base angular velocity in the equations of mo- 
tion. Earlier researchers avoided the use of quasi-coordinates by doing the planar case only, using Euler angle derivatives, 
or eliminating the angular velocity with the momentum constraint before applying Lagrange's Equation. 
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Chapter 4 - Singularities of Momentum-Constrained Jacobians 

In Chapter 3, the kinematics and dynamics of an n-link SMM were developed. In this chapter, 

the concept of the manipulator Jacobian is extended to SMMs with varying levels of base control. 

Some of these new Jacobians have singularities with properties different from the singularities as- 

sociated with fixed-base manipulator Jacobians. The effects of these singularities are investigated, 

and methods of alleviating associated problems are demonstrated. 

4.1  Free-Floating SMMs: The Generalized Jacobian Matrix and Dynamic 
Singularities 

For free-floating6 manipulators, the system dynamics play an integral role in the traditionally 

kinematic problem of relating end-effector motion and joint motion. Umetani and \oshida were the 

first to propose the concept of using momentum conservation equations to eliminate the satellite 

base motion variables from the kinematic equations to create a new type of manipulator Jacobian. 

They termed the new Jacobian the Generalized Jacobian Matrix (GJM). Several subsequent con- 

trollers have been based upon this concept [23,28,51]. Papadopoulos and Dubowsky [35] raised 

concerns about these methods by noting the existence of dynamic singularities—SMM configura- 

tions where the GJM is rank deficient. They showed that these represent configurations at which 

the end-effector is physically unable to move in the singular direction. They divided the reachable 

workspace of an SMM into two parts: the path independent workspace (PIW) and the path depen- 

dent workspace (PDW). The PIW consists of all points in workspace in which there is no possi- 

bility of encountering a dynamic singularity, whereas the PDW encompasses all of the remaining 

workspace. In the PDW every end-effector position can be associated with a dynamic singularity, 

6The exact meaning of the terms "free-floating" and "free-flying" varies between authors in the space robotics 
literature. A free-floating SMM is defined here to mean an SMM with no active base control in either translation or 
orientation. The adjective free-flying generally indicates that the robot is mounted on a base capable of moving freely in 
the workspace. Since this is assumed in the definition of a satellite-mounted manipulatoi; this term is seldom used in this 
work. 

37 



although whether a singularity actually occurs during any given task depends upon the path of the 

manipulator motion. They concluded that nearly any control algorithm derived for terrestrial robots 

could be used for SMMs if the dynamic singularities are avoided. 

To construct the Generalized Jacobian Matrix, we begin with the expression for the velocity 

kinematics which was derived in Chapter 3 (Eq. (11)), 

r = Jvv0 + Juu + Jee (112) 

For a fixed-base manipulator, the base motion is zero, and the first two terms of the equation dis- 

appear. At any given instant, the end-effector velocity depends only on the joint velocities, which 

may be directly controlled through the joint actuators. This direct link between the system input and 

output is highly desirable when constructing the robot controller. For a free-floating SMM, the base 

motion terms of Eq. (112) are not zero, but no base actuation exists. The lack of direct actuation of 

the kinematic variables in Eq. (112) provides the motivation for constructing the GJM. 

A Jacobian that maps joint velocity space to end-effector velocity space can be constructed 

using conservation of momentum to eliminate v0 and u from Eq. (112). The momentum expressions 

were derived in Chapter 3 as Eqs. (101) and (109) and are repeated here, where we assume the 

momenta are zero for a free-floating SMM 

p   =   PVVQ + PUU + P99 = 0 (113) 

h   =   Hvvo + Huu + H$e = 0 (114) 

Equation (113) can be solved for VQ, 

v0 = -— (Puu> + Pe'e) (115) 

Substituting this expression for v0 into Eq. (114) gives 

h   =    (HU-—HVPU)U+(HO-~HVP$)G (116) 

=   HuüJ + HeÖ (I17) 
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Using the expressions for the H and P matrices given in Eqs. (102) and (110), Hw and He are 

n» = ^o + Ei^W-m^^l-^-E^^E^^        (us) 
n -,       n n 

He   =   EiÄor/*ÄoJwi + miroXj«*} EmiroXEmiJ™ (119) 

Now recalling that h = 0, Eq. (117) can be solved for u>, 

w = -HZlHee (120) 

Combining with Eqs. (112),(113), (115), and (120) gives 

re   =    i^-Jv[puH-1H9-Pe)-JuHZlHe + J^\9 (121) 

=   JÖ (122) 

The Jacobian J is equivalent to the Generalized Jacobian Matrix first developed by Umetani 

and Yöshida. Satellite-mounted manipulator configurations where J is less than full row rank, were 

termed dynamic singularities by Papadopoulos and Dubowsky since J depends not only on the 

system configuration, but on the inertial properties as well. The dimensions of J will depend upon 

the sizes of re and 9. If J is square, dynamic singularities are equivalent to 

det (f) = 0 (123) 

Since J is frequently not square in subsequent sections, we use the condition 

SL (/) = 0 (124) 

where a(-) denotes the minimum singular value, to find singular configurations by a numerical 

search. 

Papadopoulos and Dubowsky also noted that dynamic singularities do not depend on the space- 

craft position or attitude. This can be seen by examining each of the terms in Eq. (121). Definitions 

of these variables are given in Eqs. (9), (102), (118), and (119). There is no dependence on space- 

craft position, r0, in the definition of the GJM, and J depends on the spacecraft base attitude only 

through the rotation matrix Ftf. This rotation matrix can be factored out in front of all terms that 
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make up J, giving 

J = R°IJ(6) 025) 

Since the rotation matrix is nonsingular, all singularities of J must be contained in J, which depends 

only on the joint configuration. 

Recall that the end-effector position in workspace depends on not only the joint configura- 

tion, but on the spacecraft position and orientation as well. Consequently, a distinct singular joint 

configuration, represented by a (zero-dimensional) point 9a in joint space, corresponds to a higher 

dimensional region in inertial workspace. Using a spatial example, imagine holding the arm joints 

fixed at a singular configuration (6 = 9a) and varying r0 and ft in Eq. (5) overthe complete range of 

possible values. The end-effector is mapped to a sphere in workspace, centered about the center of 

mass of the system. This sphere is a two-dimensional represention in workspace of all the possible 

end-effector positions that can be associated with that particular singular configuration, represented 

by a zero-dimensional point in joint space. 

The dynamic singularities of an SMM bear a close relationship to the kinematic singularities of 

its arm. The kinematic singularities form a set of manifolds in joint space, and the dynamic singular- 

ities form similar sets. Each manifold of dynamic singularities is a perturbation of a corresponding 

manifold of kinematic singularities. As the ratio of manipulator mass/inertia to base mass/inertia 

increases, the size of this perturbation increases. The reverse is also true. Indeed, examining the de- 

finition of J in Eq. (121), it is clearthat as H« and mT grow relative to He and Pe, J approaches J$. 

This correspondence between kinematic and dynamic singularities motivates much of the follow- 

ing discussion, in which we seek to solve problems caused by dynamic singularities using methods 

similar to those which we would use to handle problems stemming from kinematic singularities. 
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Figure 4. Fixed-Base Planar Arms, Two-Link (a) and Three-Link (b) 

These characteristics of the GJM and its singularities have all been expressed or implied in the 

work of Umetani and Yoshida, Papadopoulos and Dubowsky, and others. In the remainder of this 

chapter, we investigate some means of reducing the effects of dynamic singularities. 

4.2 The Impact Of Redundancy 

For terrestrial robots, kinematic singularities are an important consideration in path planning 

and control. Many control methods rely upon inverting the manipulator Jacobian (such as the re- 

solved rate [50] and resolved acceleration control methods [22]). In the neighborhood of a singu- 

larity, these algorithms generate high command rates/accelerations for the joints and can fail com- 

pletely at singularities. Redundancy has an interesting impact on this problem. For many designs, 

increased degrees of freedom results in an increase in the number of singular configurations. As an 

example, consider the difference between the planar two-link arm and the redundant planar three- 

link arm, shown in Figure 4. The two-link arm is singular when 02 = ±A;7r (k — 0,1,2,...), 

corresponding to the outer and inner boundaries of its workspace. However, the three-link arm is 

singular when 02 = ±kir and 03 = ±kir (k = 0,1,2,...), corresponding not only to workspace 

boundaries, but also to interior points. The increased number of singularities is offset by the ability 
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(a) 

(b) 

Figure 5. Planar SMMs, Two-Link (a) and Three-Link (b) 

of the redundant arm to "maneuver around" interior singularities using null motion.7 Interior points 

in workspace can be reached by many joint configurations, only a few of which may be singular. 

For space manipulators, the effect of redundancy is quite similar, increasing potential singular- 

ities while providing a means for singularity avoidance. The singularity increase is apparent when 

one considers the correspondence of singularity manifolds discussed earlier. Since the redundancy 

in the arm creates new kinematic singularity manifolds, the SMM has new dynamic singularity man- 

ifolds as well, each a perturbation of its kinematic counterpart. The means of singularity avoidance 

is identical—the SMM with a redundant arm has null motion associated with the extra degree of 

freedom (DOF). 

To illustrate, compare the two planar SMMs shown in Figure 5. The first is a spacecraft base 

with a two-link arm, and the second is a base with a three-link arm. The physical parameters of the 

two-link are given in Table 1, and those of the three-link are given in Table 2. All joints are revolute. 

7Null motion is defined as joint motion which does not alter the position of the end-effector in workspace. It is a 
product of the redundancy of the system and is directly associated with the null space of the manipulator Jacobian. 
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Body k{m) rrn(kg) h{kg-rnl) 
0 1.0 100            16.67 
1 1.0 20             1.733 
2 1.0 20             1.733 

Table 1. Two-Link SMM Physical Parameters 

Both bases are identical, as is the total mass and length of the manipulators, so that the reachable 

workspace is equal as well. The only difference is the additional DOF in the three-link arm. Using 

the condition given in Eq. (124), the singular joint configurations can be found through a numerical 

search of joint space. The corresponding end-effector positions in inertial workspace can be found 

with Eq. (5), letting r0 and Q vary over all possible combinations. 

The inertial workspace of the two-link is shown in Figure 6, with the regions of potential sin- 

gularities (Papadopoulos' PDW) shaded. The two bands of the PDW can be associated with the two 

kinematic singularities of a fixed-base two-link arm. The outer band consists of the set of dynamic 

singularities which include the kinematic singularities 02 = 2&7r (k = 0,1,2,...), whereas the in- 

ner band consists of a second set of dynamic singularities which include the kinematic singularities 

02 = (2fc + l)7T(fc = 0,1,2,...). 

The inertial workspace of the three-link is shown in Figure 7. In this case, a much greater por- 

tion of the total workspace is part of the PDW This is a result of the added sets of dynamic singular- 

ities. Each new singularity set can be associated with one of the internal kinematic singularities of 

the fixed-base three-link. The expanded size of the PDW suggests that the redundant SMM is more 

likely to suffer from the negative effects of dynamic singularities. However, singularity avoidance 

methods used for fixed-base redundant robots can be extended to space manipulators. 

The typical singularity avoidance method is based on using the system redundancy. Consider 

the task of controlling the end-effector position in a plane. This requires the velocity kinematic 

relation given in Eq. (122). For the nonredundant two-link arm, the Generalized Jacobian, J, is 
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Body k (m) mi (kg) h (kg ■ m2) 
0 1.0 100 16.67 

1 0.67 13.33 0.5383 

2 0.67 13.33 0.5383 

3 0.67 13.33 0.5383 

Table 2. Three-Link SMM Physical Parameters 

-2-1 0 1 2 
x-Coordinate (m) 

Figure 6. Inertial Workspace of Two-Link SMM 
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Figure 7. Inertia! Workspace of Three-Link SMM 

45 



2x2, and can be inverted to determine joint velocity commands that give the desired end-effector 

velocity, 

ec = J~lrc (126) 

When the manipulator is in the neighborhood of a dynamic singularity, this relation results in large 

joint velocity commands, and will fail completely at a dynamic singularity. However, for the redun- 

dant three-link arm, J is 2 x 3 and the inversion of Eq. (122) requires a pseudoinverse,8 

K = J*rc (127) 

The pseudoinverse has the advantage that it is defined even if J is singular, but it still results in large 

rates near the dynamic singularities, since the pseudoinverse returns an exact solution when it exists. 

However, the pseudoinverse does not give a unique solution to Eq. (122). Since J is 2 x 3 and has 

rank two when not at a dynamic singularity, it has a null space of dimension one. The solutions to 

Eq. (122) can be parameterized by 

0C = J#rc + (U - J*J)z (128) 

where (U — J*J) is referred to as the null space projection operator, drying the parameter z 

gives all possible choices of 6C which result in the desired end-effector velocity. Liegeois [17] first 

demonstrated how this type of relation can be used to reduce a potential function by substituting the 

gradient of the potential for the parameter z, 

9C = J*ved + (U- J*J) (-fcff) (129> 

where F = F (9) is a potential function, k is a positive gain factor, and J is the manipulator Jaco- 

bian. \bshikawa [52] applied this method to singularity avoidance of terrestrial robots by defining 

a potential function based on his measure of manipulability, 

F=-^Jdet(JJT) (130) 

8RecaE that by "pseudoinverse' we mean the Moore-Penrose Generalized Inverse, computed using a singular value 
decomposition (SVD) based method. 
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This potential function has a maximum at kinematic singularities, so using Eq. (129) to reduce 

the potential function steers the system away from singularities and towards configuration where 

mampulability is high. 

We translated these ideas to space manipulators by replacing the manipulator Jacobian, J, with 

the Generalized Jacobian, J. Although it is possible to use a potential like the one in Eq. (130), the 

complexity of the Generalized Jacobian makes it impractical to compute the gradient of this type of 

potential function analytically. An alternative is to define a simple potential function with similar 

maxima. A simple choice for the three-link SMM is 

F(Ö)=(e + Sin^2)(e + sin^3) 
(131) 

This function was chosen because, for base-to-arm mass ratios on the order of our example, the 

dynamic singularities of the three-link SMM all occur when 62 and 93 are near zero or IT. The 

constant e is a small positive number used to keep the potential function finite for all values of 6. 

The analytic expression for the gradient is easily found and has the added benefit of being simple 

to compute each time it is needed by the control algorithm. 

4.3  Prismatic Joints 

The previous section demonstrated that designing redundancy into an SMM provides mixed 

results in terms of eliminating dynamic singularities. Another approach is to use prismatic joints in 

place of revolute joints. Motivation for this concept stems from the usefulness of prismatic joints 

in eliminating kinematic singularities in fixed-base manipulators. Consider two designs for a two 

DOF planar manipulator, the two-link arm from the previous section (Figure 4), and the one-link 

arm shown in Figure 8. The single link manipulator has collocated revolute and prismatic joints 

which provide a total workspace identical to the two-link arm. In the remainder of this paper, these 

manipulator designs will be designated as the revolute-revolute (RR) and revolute-prismatic (RP) 
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Figure 8. Planar Two-DOF Ami (RP) 
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designs, respectively. As noted earlier, the RR arm is singular when 6>2 = kir, (k = 0,1,2,.. .)• The 

corresponding end-effector positions include the circle which defines the outer edge of workspace 

and the central point in the workspace. Now examine the manipulator Jacobian of the RP arm, 

JRP = 
cos 6   —I sin 0 
sinö    I cos 9 

(132) 

It is evident that the Jacobian only loses rank at one point in joint space, I = 0. This corresponds 

to the center of the workspace. Whereas the outer edge of workspace is a kinematic singularity for 

the RR arm, the Jacobian of the RP is arm is still full rank at the outer edge (I = lmax). Of course, 

no motion in a positive radial direction is possible because of the joint limit on the prismatic joint, 

but motion in a negative radial direction is perfectly feasible. More important is the behavior of 

the arms near the edge. For the RR arm to generate radial motion of the end-effector, large joint 

velocities are required, whereas the RP arm need not use excessive joint velocities to generate radial 

motion. In essence, the RP design has eliminated one of the kinematic singularities. 

An SMM using a prismatic joint enjoys similar benefits. Consider the one-link, two-DOF 

SMM shown in Figure 9. Its physical parameters are shown in Table 3. By design, the total reachable 

workspace is identical to the RR and RRR SMMs shown in Figure 5. The inertial workspace of 

the RP SMM is shown in Figure 10, where again the shaded region is the portion of workspace in 

which dynamic singularities may occur (the PDW). Compare this to the workspace of the two-link 

and three-link SMM in Figures 6 and 7. Clearly, the PDW of the RP design is far smaller than for 

either the RR or RRR designs. This is primarily a result of eliminating the entire set of singularities 

at the outer edge of workspace. The remaining region of potential dynamic singularities is created 

by rotating the dynamic singularity manifold in joint space about the system center of mass. This 

manifold is a perturbation of the kinematic singularity mentioned for the fixed-base RP manipulator 

aU = 0. 
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Revolute/Prismatic Joint- 

Figure 9. Planar SMM with Two DOF (RP) Arm 

Body    l(m)    mjjkg)    Ij{kg-mz) 
0 1.0 100 16.67 
1 2.0 40 13.467 

Table 3. One-Link (RP) SMM Physical Parameters 
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Figure 10. Inertial Workspace of Planar SMM with RP Arm 
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4.4 Joint Limits 

In real mechanisms, joints nearly always have limited range of motion. Revolute joints will 

rarely rotate a full 2-K radians, and prismatic joints must have finite ranges. Joint limits are generally 

a handicap of real mechanisms, since they typically shrink workspace and decrease manipulability, 

but a positive effect is that limits can eliminate potentially singular configurations. Consider the RR 

planar manipulator. If the j oint motion is unlimited, then the manipulator has kinematic singularities 

at 02 = ±fc7r, but if the second joint is restricted to the range, —7TT/8 <02 < 7TT/8, then only one 

singularity remains, Q% = 0. For the RP manipulator, limiting the prismatic joint such that I > 0 

eliminates the only kinematic singularity. This might seem unremarkable, since singularities are 

eliminated by restricting the reachable workspace, essentially just "cutting away" the region that 

causes the difficulties. But examine the effect of a similar joint limit for the two-link (RR) SMM. 

Suppose the two-link (RR) SMM has the joint limit -TT/2 < Q\ < ir/2. The reachable workspace 

is unchanged, since the system is free to rotate about its center of mass. The size of the PDW, 

however, is reduced as a result of eliminating potential singular configurations. This reduction is 

shown in Figure 11. Since joint limits can introduce problems as well, one cannot conclude from 

this example that joint limits are a panacea for dynamic singularities. The problem of avoiding 

dynamic singularities is traded for the problem of avoiding joint limits. This trade maybe beneficial 

given the proper controller, however, so the role of joint limits in eliminating dynamic singularities 

should not be overlooked in SMM design. 

4.5 A Singularity-Free Design 

Previous sections concentrated on single design features and their effects on dynamic singular- 

ities. Alone, each feature offered limited advantages, but in combination they can completely elim- 

inate dynamic singularities. Consider the simple example problem used throughout the previous 
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Figure 11. Reducing PDW Using Joint Limits 
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Figure 12. Planar SMM with RRP Arm 

sections, that of positioning the end-effector in a plane. An SMM design incorporating redundancy, 

a prismatic joint, and joint limits is shown in Figure 12. This RRP design resembles the original RR 

design, but by adding the prismatic joint, the dynamic singularities associated with the outstretched 

arm (02 ~ 0) and the folded arm (02 ~ TT) are eliminated. The RRP design also resembles the RP 

design, but limiting the minimum forearm length by requiring that I > Zmin eliminates the singu- 

larities near I = 0. In the original RP design, this limit would eliminate reachable workspace, but 

the extra revolute joint allows the limit on the prismatic joint without restricting workspace. Using 

physical parameters identical to the RRR three-link (Table 2), the reachable workspace is the same 

as for all of the earlier examples. However, the entire workspace is free of dynamic singularities. In 

addition, the redundant DOF can be used for avoiding the joint limits. This could be implemented 

using Eq. (129) with a potential function based on the prismatic joint position 

F (I) = ..     .      ^   *      . ^ (133) 
y-       'min + £)V'       'max       £) 

This potential function would tend to keep the prismatic joint in the center of its range of motion 

whenever possible. 
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It should be noted that although this design has no dynamic singularities and suffers no adverse 

effects from being near a joint limit, it can still be trapped if the prismatic joint actually hits its limits 

(0.667 < I < 1.333). For this reason, it can be viewed as a improvement over the free-floating 

revolute designs, but not as the ideal SMM control concept. 

4.6 The Impact of Base Control 

4.6.1   Full Base Control 

Perhaps the most effective means of eliminating the problems caused by dynamic singularities 

is to control the satellite base of the SMM system. Recall that dynamic singularities are a direct result 

of a freely moving base. At a singularity, the system is in a configuration in which some direction 

of end-effector motion is physically unrealizable. In these cases, the reactive motion of the base 

induces end-effector velocities which exactly cancel the velocity produced by the arm joint motion. 

Given this, it is unsurprising that controlling the base motion eliminates dynamic singularities. This 

effect can be seen by examining the relevant equations. Consider an SMM with an n-DOF arm, 

where the end-effector position and orientation are to be controlled in three dimensions. The velocity 

kinematics equation, Eq. (112), is 

fe = Jvv + JuUJ + Je9 (134) 

Here re is 6 x 1, v and u> are 3 x 1, 6 is n x 1, Jv and Jw are 6 x 3, and J0 is 6 x n. If the base is 

controlled in translation and rotation, then momentum is not conserved, and the singularities depend 

only on the kinematic equation. The system is singular if 

rank([ Jv   Ju   Je ]) <6 (135) 

The first six columns of this matrix are 

[  "v     Jix>   J 
TT „ex ^3x3    ~r0 

03x3      £^3x3 
(136) 
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which is clearly always of rank 6, so the system cannot be singular. The end-effector can be given an 

arbitrary velocity by holding the arm joints fixed, and controlling the base. With the joints fixed, the 

SMM becomes a single rigid body—all points in the body have the same angular velocity, and the 

translation at the base can be chosen to compensate for translation due to the rotation and produce 

an arbitrary end-effector translation. 

We illustrate this argument for a planar case, in which the end-effector position and angle are 

controlled, and the SMM consists of a base and three-DOF planar manipulator. In Ulis case, fe and 

9 are 3 x 1, v is 2 x 1, and u is 1 x 1. The Jacobians Jv, Jw, and Jö are 3 x 2, 3 x 1, and 3x1, 

respectively. The system is singular if 

rank([ Jv   J„   Je ]) <3 (137) 

The first three columns are 

[  Jv      °*CJ   J  — 0   1     r%x (138) 
0   0      1 

so the system is never singular. The system is completely controllable by base actuation alone. 

Consider the example shown in Figure 13, where the SMM joint configuration is B\ = -7r/4, 

02 = 03 = 7r/4 (refer to Figure 5 for joint angle convention), and the end-effector is tasked to move 

in a positive x-direction while rotating counter-clockwise. The joints can remain completely fixed 

and the task can be performed by rotating and translating the base as shown. 

While base control is an effective means of eliminating dynamic singularities, it does have an 

important disadvantage. Controlling the base requires some form of base actuators. For rotation, 

there are a number of reasonable choices, including thrusters, reaction wheels, and control moment 

gyros. For translation, thrusters are the only practical alternative. Unfortunately, thrusters require 

fuel, and conserving fuel is a high priority for all spacecraft. The high cost of base actuation in strate- 

gies relying on base control is the most often used argument in support of free-floating strategies. 
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Figure 13. Equivalent Base Motion and End-Effector Motions With Joints Fixed 
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4.6.2   Base Attitude Control 

Another possibility is that of controlling only the base attitude. This eliminates the need for 

thrusters, since base translation actuation is unnecessary, and base attitude actuation can be done with 

reaction wheels or control moment gyros. The energy source for these devices is renewable, so the 

argument for free-floating control is much weaker, especially in light of the resulting performance 

enhancements that will be shown in this section. 

If the FW or CMG cluster is considered "outside" the SMM system, then angular momentum 

of the system is not conserved. Since no external forces are applied, linear momentum is conserved, 

and the linear momentum equation still can be used to eliminate kinematic variables. The relevant 

equations, Eqs. (112) and (113), are 

r = Jvv + Jwu + Je9 (139) 

p = Pvv + P^OJ + Pee (140) 

We eliminate the base translation velocity, v, by solving the linear momentum equation for v (as- 

suming p = 0), and substituting into the kinematic velocity equation. This gives 

r   =    (Ju-JvP^P^u+iJo-JvP^Pe)^ (141) 

=   [ JL   Je] 
U) 

0 (142) 

Although the structure of this Jacobian resembles that of the Generalized Jacobian Matrix (see 

Eq- (121)), it is similar to the manipulator Jacobian of a robot formed by mounting the SMM arm 

on a spherical joint. Its singularities are essentially kinematic singularities. This can be shown by 

an example. For the two-link planar SMM, we derive the Jacobian of Eq. (142). 

The end-effector position is given by the equation 

r = r0 + b0 + ax + bx + a2 + b2 (143) 

where r0 is the position vector of the base center of mass relative to the inertial origin, a* is the 

position vector of the ith link center of mass relative to the ith joint, and b* is the position vector of 
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Figure 14. Two-Link Planar SMM 

the i + Ith joint relative to the ith center of mass. These vectors are shown in Figure 14. Equation 

(143) can be written in component form (inertial frame) as 

rx   =   rox + boC\ + (a\ + b\) c\2 + (a<i + bz) era 

roy + b0si + (ai + 6i) si2 + (a2 + b2) S123 

(144) 

(145) 

where we use the following shorthand notation for sine and cosine functions, 

d   .4   cos (öi) (146) 

8!   4   sin (öi) (147) 

ci2   =   cos(öi + ö2) (148) 

cm   =   cos(öi + Ö2 + ö3) (149) 

Differentiating with respect to time, this becomes 

rx   =   rQx - b09lSl - (oi + öi) (öi + ö2) *i2 - («2 + 62) (öi + Ö2 + Ö3)si23 (150) 

r„   =   r0j/ + öoÖici + (ai+6i)(öi + Ö2)c12 + (a2 + Ö2)(öi+Ö2+Ö3)ci23 (151) 

In matrix form this is the velocity kinematics equation, 

r = Jvv + Jww + Je'O (152) 
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where 

rox 
f0y 

U     =     01 

0   = 

Jv    =    ^2x2 

02 

03 

*^CJ     — 
-60si - (ai + 6l) Sl2 - (ö2 + 62) «123 
boci + (ai + bi) c\2 + (a2 + 62) C123 

- (ai + 61) s12 - (a2 + 62) «123    ~ (<12 + 62) «123 
(01 + bi) C12 + (a2 + 62) C123 (»2 + &2) C123 

The linear momentum of the system is the sum of the linear momentum of each of the three rigid 

Jo 

(153) 

(154) 

(155) 

(156) 

(157) 

(158) 

bodies, 

p = mQvQ + m\v\ + rr^i^ (*5^) 

The components of p in the inertial frame are 

Px   =   m0r0x + mi (r0x - Mi^i - a\ \6i + 02 J «12) (160) 

+m2 U0x - 6o0i«i - (ai + 61) f0i + 02J «12 - »2 f 01 + 02 + 03 J «123) 

Py   =   rn0foy + mi (roy + Mici + «l f 01 + 02 J C12J (161) 

+m2 (foy + b09ici + (ai + 61) (0i + 02J ci2 + a2 \9\ + 02 + 03J C123J 

Converting to the matrix form of the linear momentum equation, this becomes 

p = Pvv + PuU + Pg9 (162) 

where v,u>, and 0 are as above and 

Pv   =   mTt/2x2 

Pu,   = 

Po   = 

- (mi + m2) b0si - (miai + m2 (ai + 61)) «12 - m^a^s^z 
(mi + m2) &0C1 + (miai + mi (ai + 61)) C12 + "1202^123 

— (miai + m2 (ai + 61)) «12 — n^fl^sm     — m202Sl23 
(mia! + m2 (ai + 61)) ci2 + m2a2ci23        m2a2ci23 

(163) 

(164) 

(165) 
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Solving Eq. (162) for the base translation and substituting into Eq. (152), 

r   =    [Jui--Lp\u+(jd-J-Pft\Q 
rriT     ) \ in-T 

[ Ju    Je 
ÜJ 

6 
= J, bac 6 

(166) 

(167) 

The elements of the base attitude controlled Jacobian can be determined by substituting Eqs. (157), 

(158), (164), and (165) into Eq. (166), 

"-"boc = 
-k\S\ - k2Su - fasi23     -fc2Sl2 - fosi23     -^3*123 
k\Ci + A;2Ci2 + &3C123 fc2Cl2 + ^3^123 &3C123 

(168) 

where 

k\   =   mobo/rriT 

hi   =   (m0ai + (mo + mi)b1)/mT (169) 

k3   =   (rriT (a2 + 62) — ^202) /TUT 

If the SMM base was pinned to an inertially fixed frame, allowing rotation about the base 

center of mass, but not translation, it would be kinematically equivalent to a fixed-base three-link 

planar robot. The manipulator Jacobian, J311C, for this type of robot is 

J-ilk = 
-fc4Si — fc5Si2 — k6Su3     —köSi2 — k6Si23     —^6*123 
k\C\ + fc5Ci2 + ^60123 foci2 + keCu3        kßCi23 

(170) 

where 

ki    =    60 

ks   =   0,1 + &i (171) 

&6 = a2 + &2 

Comparing Jbac and J3^, it appears that the only effect of the translating base is to change 

the coefficients of the sine and cosine functions in the elements of the Jacobian. Essentially, the 

geometric link lengths of J3ik are replaced with "generalized link lengths" created by combinations 

of lengths and masses in Jbac • The joint angles that comprise a singular configuration for the base- 

attitude controlled SMM are identical to those of the fixed-base three-link arm. 
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Figure 15. Two-Link SMM With First-Link Center of Mass Offset 

This is not necessarily always the case. The example above assumed that the centers of mass 

of the links lay on a line connecting the joints. If this is not the case, the angles which create a 

singularity of the SMM may be different from the singular angles of the fixed-base counterpart. 

Consider a modification of the example above, in which the center of mass of the first link does 

not lie on a line connecting the joints, as shown in Figure 15. The end-effector position is given 

vectorially by Eq. (143), just as before. Now the end-effector velocity can be written in vector form 

as 

f = v0 + wo x bo + u?i x (ai + bi) + w2 x (a2 + b2) (172) 

where u>i is the angular velocity of the ith body with respect to the inertial frame. This can be 

rewritten as 

r   =   v0 + w0 X (b0 + ai + bi + a2 + b2) (173) 

+wj x (a2 + bi + a2 + b2) + u\ x (a2 + b2) 
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where u{ is the angular velocity of the jt/l-body with respect to frame Ti. The momentum of the 

system is 

p   =   0 = movo + m\w\ + m2v2 

=   mTVo + wo x [mi (b0 + ai)+m2(bo + ai+ba+a2)] (174) 

+u>l x [miai + m2 (ai + bi + a2)] + u>? x m2a2 

Solving this for v0 and substituting into Eq. (173) gives 

r   =    {wo x [m0 (b0 + ai) + (m0 + mi) (bi + a2) + mrb2] 

+u>l x [m0ai + (m0 + mi) (bi + a2) + mTb2] (175) 

+ «iX [(m0 + mi) a2 + mrb2]} 

For the planar SMM, all of the angular velocity vectors are perpendicular to the plane of motion, 

so the configuration is singular only if all three of the vectors "crossed by" an angular velocity 

vector are collinear. To find the angles (6\, 02) that result in this singular configuration, a geometric 

approach can be used. Define three vectors ui, u2, and u3 as 

ui    =   m0 (b0 + ai) + (m0 + mi) (bi + a2) + mTb2 

u2   =   moai+(m0 + mi) (bi+a2)+mrb2 (176) 

"3   =   (mo + mi)a2+mrb2 

The angle between the first and second links is 02, and by definition is the angle between the vectors 

ai + bi and a2 + b2. To determine this angle, when the system is singular, start by assuming u2 is 

collinear to 113. Then u2 is a scalar multiple of 113, and we can write 

u2   =   fcu3 (177) 

moai + (mo + mi)(bi+a2) + mrb2   =   fc((m0+ mi)a2+myb2) (178) 

m0ai+ (m0+mi)bi   =   (k - 1) ((m0 +mi)a2 + mrb2)      (179) 
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We have assumed that the center of mass of link two does lie on the line connecting joint two and 

the end-effector (see Figure 15), so vectors a2, b2,and a2 + b2 share a common direction. Then 

m0ai + (m0 + mi) bi = fc'a2 = k" (a2 + b2) (180) 

for some scalars k! and k". This equation demonstrates that the vector moai + (mo + mi) bi is 

collinear with the vector a2 + b2. Then the angle between the vector moai + (mo + mi) bi and 

the vector ai + bi is equal to ±02 if k" > 0 or TT ± 02 if k" < 0. This angle is easily found using 

the definition of the dot product, 

u-v4||u||||v||cos0 (181) 

Applying this to find 02 results in the equation 

(ai + bi) • (m0ai + (m0 + mi) bi) . 
± COS C/2 = -r. :—rrü 7 ! Til—ü \l°^) 

||ai +bi|| ||m0ai + (m0+mi)bi|| 

This equation has at most two solutions on the interval 0 < 02 < 2n, for each choice of sign on 

the left hand side for a total of four possible solutions. Only two of these solutions are consistent 

with the definition of 6>2 (positive clockwise, so that (ai + bi) x (a2 + b2) is always in a positive 

^-direction). So for a given SMM, there are only two possible singular values of 02. 

In the same way, the collinearity of vectors ui and u2 can be used to determine the angles of 

0i which result in a singular configuration. In 6>i-02 space, there is a total of four singular points 

for the SMM on the interval 0 < 0i < 2TT and 0 < 02 < 2TT. 

This derivation has two notable results. First, an offset center of mass, coupled with the free 

translation of the base, can move the singular configuration away from the configuration suggested 

by the kinematic structure of the arm. Second, and perhaps most important, is that although the 

singular configuration may not be identical to that of the corresponding fixed-base robot, the sin- 

gularities are still discrete points in joint space. By controlling the base attitude, the singularities 

are distinct configurations of the arm, unlike the dynamic singularities seen for a free-floating base 

which form curves in Q\-9i space. Translated to inertial workspace, this means that the base atti- 
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tude controlled planar SMM, even with offset centers of mass, has only one-dimensional regions 

of singularity, whereas the free-floating SMM has the two-dimensional singularity regions or Path 

Dependent Workspace. 

4.7 Summary 

We began this chapter with a review of some of the fundamental concepts in the control of 

free-floating SMMs. These included Umetani and "Vbshida's Generalized Jacobian Matrix (GJM) 

and Papadopolous' definition of dynamic singularities. The independence of dynamic singularities 

from the spacecraft position or attitude was noted and we discussed how this allows a mapping 

of singular joint configurations to a region of reachable work space known as the Path Dependent 

Workspace (PDW). The relation between singularities and the ratio of base inertia to arm inertia was 

mentioned, giving rise to the idea of dynamic singularity manifolds as perturbations of kinematic 

singularity manifolds. 

In the subsequent sections of the chapter, we considered some new free-floating design alter- 

natives for alleviating the problems associated with dynamic singularities. The effect of redundancy 

was demonstrated, where we showed that redundancy increases the PDW, but also enables alternate 

joint trajectories that may help avoid singularities. Prismatic joints were shown to be effective in 

eliminating singularity sets, decreasing the size of the PDW Joint limits were shown to reduce the 

size of the PDW as well. A combination of redundancy and primatic joints was shown to eliminate 

dynamic singularities completely for a planar case. 

The last method of eliminating dynamic singularities considered was not an alternative free- 

floating design, but the approach of adding base control. We showed that, in general, complete base 

control totally eliminates dynamic singularities. For base attitude control, examples were offered 

that indicate singularities are equivalent to kinematic singularities, in the sense that their Path De- 
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pendent Workspace reduces to one dimension in the planar case and two dimensions in the spatial 

case. 
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Chapter 5 - SMM Control 

In Chapter 4, several SMM actuation concepts were introduced, momentum-constrained Jaco- 

bians were developed, and characteristics of dynamic singularities were investigated. In this chap- 

ter, these ideas are incorporated into the development of a new SMM controller. Stability analysis 

of the controller confirms the importance of avoiding dynamic singularities. Comparing the use of 

momentum-constrained Jacobians and the standard manipulator Jacobian in the controller suggests 

the primary advantage of using momentum-constrained Jacobians is significantly finer control over 

the end-effector trajectory. The effectiveness of base-attitude control in avoiding singularity prob- 

lems is demonstrated. Finally, a reduced base-torque controller is developed which combines the 

favorable aspects of both the free-floating and base-attitude controlled approaches. 

The SMM control problem, as considered here, is to choose appropriate joint torques (and base 

torques/forces where base actuation is used) to steer the end-effector from one position to another, 

preferably along a prescribed path. The input and output are in fundamentally different spaces, 

joint space and workspace. In the control of terrestrial robots, this division has led to two primary 

approaches to control, one based on inverse kinematic relations, and the other on the manipulator 

Jacobian. 

In the first approach, the control problem is divided into two subproblems, path planning and 

joint control. Path planning consists primarily of determining the joint trajectory that will result in 

the desired end-effector trajectory using an inverse kinematic solution. The joint controller then de- 

termines the torques which will provide this joint trajectory. Many effective and general methods 

of joint control exist. These range from simple independent feedback loops for each joint,which 

treat nonlinear dynamic effects as disturbances, to nonlinear methods like the method of computed 

torques, which uses a dynamic model of the system to improve the tracking. In contrast, general 
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Solutions to the inverse kinematics problem do not exist, since solutions are dependent on the par- 

ticular robot geometry. Instead, a pool of simplifying techniques have accumulated which attempt 

to divide the problem into smaller problems, which can be solved and used to construct a complete 

solution to the original problem. 

The "inverse kinematics plus joint control" approach can be applied to SMM control, but 

several complications arise. The end-effector position no longer depends only on the joint angles 

of the manipulator, but also on the position and orientation of the base. For a spatial manipulator, 

this adds six DOF to the already difficult inverse kinematics problem. The increased complexity 

makes any controller requiring an inverse kinematic solution somewhat unattractive. Furthermore, 

if the SMM is free-floating, the joint control portion of this control approach is also considerably 

more difficult since there is no direct control over the base position or orientation, so traditional 

joint control methods are unusable. A solution to this new joint control problem does exist (recall 

Reyhanoglu and McClamroch [39]), but this method is not well suited for a trajectory-following 

problem. 

The alternative control approach, based on the manipulator Jacobian, entirely avoids the prob- 

lem of solving the inverse kinematics, and does not require control of the unactuated degrees of 

freedom. The main feedback is accomplished using workspace variables, with end-effector veloc- 

ity or acceleration commands being generated based on end-effector position and/or velocity errors. 

These commands are converted to joint space commands using the Jacobian inverse. This type of 

method was first proposed by Whitney [50] using velocities, and is known as Resolved Motion Rate 

Control. It was extended to the acceleration level by Luh et al. [22], where it is referred to as Re- 

solved Acceleration Control. The greatest drawback of controllers based on this approach is that 

they can fail completely at singularities of the Jacobian. Despite this, it can be a powerful approach, 

and can be extended to SMM control. This is the approach used in this work. 
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5.1  Basic Controller 

In this section, a new SMM control scheme is developed. This controller, termed the "basic 

SMM controller," provides a framework for fair comparison of a variety of SMM control concepts. 

The controller consists of an outer feedback loop to provide end-effector position control and an 

inner feedback loop for joint velocity control. Each SMM control concept creates a variation of 

the basic controller according to the method used to convert work space velocities to joint space 

velocities. The framework extends to both free-floating concepts and base controlled concepts by 

defining joint space to include all actuated degrees of freedom in the system. The transformation 

from work space velocity to joint space velocity implies an inversion of a Jacobian, but no particular 

inversion method or Jacobian type is assumed in the basic SMM controller. 

The outer loop is based on Resolved Motion Rate Control [50], using proportional feedback of 

end-effector position error and the desired end-effector velocity to produce an end-effector velocity 

command. This workspace command velocity is converted to a joint velocity command using a 

Jacobian inverse. The inner loop then drives the system to the desired joint velocities. Since the 

inverse kinematic problem is not solved in this scheme, the final joint position is unknown, so only 

the joint velocity is controlled. The joint control problem is highly nonlinear, and the inner loop 

control law is derived so as to guarantee the stability of the inner loop by Lyapunov's direct method 

[47]. The inner loop is based on the method of computed torques [27,42], modified to control joint 

velocity instead of joint position. A simplification of the control law which reduces computational 

costs is also considered. 

5.1.1   Controller Derivation 

To derive the outer loop controller, we begin by defining the position error as 

e\ = rd — r (183) 
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where r is the current position of the end-effector in inertial space and rd is the desired end-effector 

position. The error rate is then 

e\ = rd — r (184) 

Feedback is synthesized using the relation, 

ei = -üTiei (185) 

where K\ is a positive definite matrix chosen to make the system stable and give the desired response 

time. Substituting the definitions of ej and k\, this equation becomes 

rd-r   =   -Kx{rd-r) (186) 

r   =   fa + Ibfa-r) (187) 

The end-effector velocity given on the left-hand side of Eq. (187) is used as the command input, 

(i.e., let fc = r), to the workspace controller. If the end-effector velocity command can be achieved 

instantaneously, this control law guarantees that the system will converge asymptotically to the de- 

sired end-effector position. 

In reality, the end-effector velocity command, rc, must be converted to a joint velocity com- 

mand, 6C. This can be done by inverting the manipulator Jacobian, 

9C = J~lrc (188) 

Two different forms of the manipulator Jacobian could be used in Eq. (188). The standard fixed-base 

manipulator Jacobian is the most straightforward choice. However, it does not accurately reflect the 

true relationship between end-effector velocity and joint velocity, failing to account for the moving 

base. A momentum-constrained Jacobian, such as Umetani and Yoshida's GJM for the free-floating 

case, or Wee and Walker's dynamic Jacobian for the base attitude controlled case, provides a more 

precise solution. The effect of this choice on the SMM response is investigated in the following 

sections. 
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The inner loop of the basic SMM controller is the joint space controller, which chooses torques 

to drive the system to the commanded joint velocities. This is a highly nonlinear problem. To derive 

a suitable controller, we use the approach of writing a Lyapunov function and choosing a control 

law which guarantees asymptotic stability. 

The equations of motion can be written as 

M6 + C6 = T (189) 

where the unactuated coordinates from the base have been eliminated using the momentum equa- 

tions (see Appendix A). Define velocity and acceleration errors 

e2   =   9-6c (190) 

e2 = e-ec (191) 

Define a Lyapunov function 

V = ejMe2 (192) 

Note that V > 0 for all 0 and 9. Differentiating Eq. (192) gives 

V = 2ejMe2 + ejMe2 (193) 

Using Eqs. (189) and (191), and assuming 9C = 09, Eq. (193) becomes 

V = 24 (T - C'e\ + e2
TMe2 (194) 

Now we can choose the control law 

r = -K2e2 + C9C (195) 

so that Eq. (194) becomes 

V = -2elK2e2 + ej (M - 2c) e2 (196) 

9In the development of the SMM equations of motion, effects related to the structural flexibility of the links were 
neglected. Since spacecraft will generally be lightweight structures, this assumption necessarily implies that commanded 
motions will be slow and trajectories will be planned so as to have negligible acceleration. Therefore, it is assumed that 
6c = 0. This allows a stabilizing control law using only a feedforward velocity term. If Hie assumption is not made, the 
control law would also require a feedforward acceleration term. To compute this term, the derivative of the Jacobian is 
needed, creating a significantly higher computational load on the controller. 
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Figure 16. Basic Nonlinear SMM Controller 

The second term on the right-hand side of Eq.  (196) can be shown to be zero for all 0, 9 (see 

Appendix B.3), so according to the direct method of Lyapunov, choosing a positive definite matrix 

K<i guarantees that system will asymptotically converge to the desired velocity. 

Figure 16 shows a block diagram of the basic SMM controller. The block labeled "J_1" is 

intended to represent whatever method of converting from workspace velocity to joint space velocity 

is to be used in a particular variation. The "System Model" represents the actual dynamics of the 

system. For a real system, torques (T) would be the inputs and joint velocity (6) and end-effector 

position (r) would be measured values. For simulation purposes, the block labeled "Equations of 

Motion" represents the numerical integration of state Eqs. (95) and (96), where M, C, and r are used 

in place of M, C, and Q, respectively. Finally, the block labeled "Forward Kinematics" represents 

the forward kinematic equation, Eq. (5). Specific elements of the unreduced equations of motion 

matrices M and C are given for the planar two-link case in Appendix C. The reduced matrices M 

and C are computed numerically using the technique shown in Appendix B.2. 
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5.1.2   A Linearization Of The Control Law 

A disadvantage of the control law given by Eq. (195) is the significant computational cost of 

determining C at every step. As an alternative, consider the effect of using a constant average value 

for C. This would change the control law to the linear form 

T = -K2e2+Cavg6c (197) 

so that the derivative of the Lyapunov function becomes 

V   =   -2ejK2e2 + &\ (ü - 2C) e2 + e\ (öavg - c) 9e (198) 

=   -2ejK2e2 + e\ (öavg - c) 9C (199) 

If Cavg represents the center value of C for a typical task, then the second term should be small. By 

choosing a large value for K2, the first term of Eq. (199) will dominate the left-hand side, and V 

will remain negative, assuring the stability of the inner loop. Assuming that there is not a preferred 

manipulator configuration, a reasonable first choice is to let Cavg = 0. The resulting control law is 

r = -K2e2 (200) 

This is also the stabilizing control law that would result if we had assumed all the nonlinear velocity 

terms were negligible. In practice, these will probably not be completely negligible. However, given 

our concern for avoiding flexible effects it is not unrealistic to expect low velocities and Eq. (199) 

indicates that destabilizing effects of the nonlinear velocity terms can be reduced by increasing the 

inner loop gain (K2). Based on our simulation experience, the control law given in Eq. (200) was 

a satisfactory choice, but extensive testing over the expected range of operation would need to be 

done before using the linearized controller in a real system. 

Figure 17 shows a block diagram of the basic SMM controller using the control law in Eq. 

(200), so no feedforward path is shown. This is the form of the basic controller that was used in the 

examples shown in the remainder of this work. The conclusions drawn about the effectiveness of 
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Figure 17. Basic SMM Controller 

various levels of base control remain valid for the nonlinear control law, since it's use only further 

enhances the stability of the system. 

5.1.3   Stability of the Basic SMM Controller 

The SMM controller derived above consisted of two feedback loops—an outer workspace loop 

and an inner joint space loop—connected by a Jacobian inverse. Each loop was designed to be 

stable independently, but this does not guarantee the stability of the complete system. Therefore, it 

is important to analyze the complete system to find conditions under which stability is guaranteed. 

Consider the Lyapunov function, 

„T; Ji V = -e{Klel + -eiMe2 (201) 
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where ei = r - rd and e2 = 9 - 9C. Differentiating Eq. (201) gives 

V = ejK1ei + ejMe2 + -^ejMe2 (202) 

where e\=r and e2 = 0. Using the equations of motion from Eq. (189) and the control law from 

Eq. (195), Eq. (202) becomes 

V = ejK1r-eJ (^K2 + C^e2 + ^ejMe2 (203) 

or 

V = e[Kxr - ejK2e2 + ^ej (M - 2C) e2 (204) 

As in Eq. (196), the last term is zero, so 

V = ejKir - e~lK2e2 (205) 

We have already acknowledged the failure of this controller when the manipulator Jacobian becomes 

singular, so nothing is lost by assuming here that the Jacobian is nonsingular. Furthermore, assume 

for now that the Jacobian is square. Then the Lyapunov function derivative can be written as a 

quadratic form of the workspace position error, e\, and the joint velocity, 6. The end-effector veloc- 

ity, f, and joint velocity error, e2, are transformed appropriately using the Jacobian and its inverse,10 

r   =   J6 (206) 

e2   =   e-ec = 9-J-1rc (207) 

From Figure 17, rc = —K\e\, so that 

e2 = e + J-lKlel (208) 

and 

V   =   ejKxfe-e1 K2e-e[KiJ-TK2J-1Klel (209) 

-BTK2J-xKxex - e[KiJ-TK26 

10Recognize that the equation f = JO is only exact if a momentum constrained Jacobian is used, and the column 
matrix 0 represents all actuated coordinates. In a case where the standard manipulator Jacobian is used in generating 6C, 
stability is not proven, it is merely suggested. 
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where J T = (J *)   . Equation (209) can be written in matrix form as, 

V   = ejKi   9 
T J-TK2J~l     lj-J~TK2 

j L \J
T - K2J~l K2 

Kiei 

9 

-xTBx 

(210) 

(211) 

The definiteness of the symmetric matrix B in the middle of the right hand side of Eq. (210) is the 

key to the stability of the controller. The eigenvalues of B are the values A for which the equation 

(B-XU)x = 0 (212) 

has a solution for some nonzero x (the eigenvectors). Substituting the definition of B into the equa- 

tion above gives 

J-TK2J-1-\iU   \J-J'TK2 

nJ      — KoJ 
X=0 (213) 

2« *±2<J K2 — X2U 

where the set of eigenvalues, A, is divided into two subsets, Ai and A2. Using elementary matrix 

operations this linear system of equations can be rewritten as 

' 2J-rK2J~1 -\U- XiU    \{U- 2Ä) 
0 \JTJ - X2U 

Equation (214) is in block diagonal form and the eigenvalues of B are the eigenvalues of the blocks 

x = 0 (214) 

on the diagonal. Since J is assumed nonsingular, the form of the lower diagonal block, JTJ, is 

sufficient to guarantee that it is positive definite, so all the elements of A2 are positive. The upper 

diagonal block, 2J~TK2J
_1 — \U, can be made positive definite by choosing the appropriate 

gains. First, choose the K2 gain matrix to be a scalar multiple of the identity matrix, K2 = kU, 

with k > 0. Then consider the eigenvalue equation for the block, 

( 2kJ~T J'1 -\u - XU\ x   =   0 (215) 

M-Tj^x   =    (i + ^\x (216) 

Now the form of J~rJ_1 and the nonsingularity of J ensure that all of its eigenvalues are positive. 

Suppose the smallest is Amin. Then the smallest eigenvalue of k J~T J_1is fcAmiTi. Then from Eq. 
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(216), 

Umin = I + ™^i) (217) 

Now to guarantee that the min (Ai) > 0, choose k such that 

min (Ai)   =   2k\miQ-^>0 (218) 

k   >   -±- (219) 

Therefore, matrix B in Eq. (210) must be positive definite for large enough value of k. 

Therefore, the basic SMM controller guarantees stability and convergence to the desired end- 

effector position provided: 

• Ki is chosen as kU, with k chosen sufficiently large positive. Essentially, this means that the 

inner loop must be fast enough to make the nonlinear effects on the outer loop negligible. 

• The manipulator Jacobian, J, remains nonsingular.   This underscores the importance of 

avoiding dynamic singularities. 

5.1.4   Stability in the Redundant Case 

In some cases, the Jacobian relating the end-effector velocity and the actuated coordinate ve- 

locities will not be square. The cases in which there are more actuated coordinates than end-effector 

coordinates are considered redundant, and the Jacobian will have more columns than rows. The ac- 

tuator command will generally consist of a term containing the pseudoinverse of the Jacobian multi- 

plied by the workspace command and another term indicating the desired null motion, joint velocity 

combinations which are in the nullspace of the Jacobian. Then the command velocity appears in the 

form 

ec = J*fc+Nz (220) 
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where the matrix N maps a vector z into the null space of the Jacobian. Therefore the null term has 

the property that JNz = 0. If the Jacobian has full row rank, it is considered nonsingular and the 

additional property JJ# = U applies. 

The stability proof in the previous section can be done for the redundant case as well. The 

proof is identical through Eq. (205). Then 

r   =   J9 (221) 

e2   =   e-6c = 9-J*rc-Nz (222) 

Assume that the null term is dependent on the end-effector command and can be written Nz = Nrc. 

Then from Figure 17, rc = -K\e\, so that 

e2 = ö+(j#+iv)Xiei (223) 

and 

V   =   ejKxJe-^K^-ejK^^ + NY K2[j* + N)Kle1 

-eTK2 (j* + N) Kiei - ejK! (j* + iv)T K29 

(224) 

This becomes 

V = - ejKi   9 
\ JT - K2 (j

# + iV) K2 
9 

(225) 

As before, the definiteness of the symmetric matrix in the middle of the right hand side is the key 

to the stability of the system. The eigenvalues are found by solving 

x = 0 (226) 
(J* + N) K2{J# + N)-X!U ±J-(J# + N} K2 

IJ
T
 -K2(J*+N) K2-\2U 

Using elementary matrix operations this linear system of equations can be rewritten as 

2 fj# + NY K2 (j* + N)-$U- XIU   \J - (j# + N)
T

 K2 

0 \JTJ-\2U 
Equation (227) is in block diagonal form and the eigenvalues are the eigenvalues of the blocks on the 

diagonal. Since J is assumed nonsingular, the form of the lower diagonal block, JTJ, is sufficient 

x = 0 (227) 
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to guarantee that it is positive definite even for the nonsquare J (J is m x n with m < n), so all 

the elements of A2 are positive. The upper diagonal block, 2 (J# + Nj K2 [J* + Nj -\U, 

can be made positive definite by choosing the appropriate gains in exactly the same way as for 

the square case. This is guaranteed because J# 4- N has independent columns and full column 

rank (the columns of J* spans the range of J and the columns of N are in the null space of J) 

so (j* + N) [J* + N) is positive definite just as J"1J-1 was positive definite for square 

(nonsingular) J. 

Therefore, the redundant case is stable under the same conditions as the nonredundant case: 

the inner loop gain must be sufficiently large and the Jacobian must be nonsingular. 

5.1.5  A Note on Gain Selection 

To implement the SMM controller, appropriate values were needed for the gain matrices, 

K\ and K2. By choosing these matrices to be scalar multiples of the identity matrix, the system 

response was tuned with two values. The outer loop gain, K\, was the primary tool for adjusting 

the response time. The inner loop gain, K2, was sized to guarantee stability of the overall system 

and produce a desirable "linear" type of end-effector response. Using a moderate value for K2 was 

generally sufficient for stability, but often resulted in unintuitive nonlinear response. Using a high 

value for K2 not only ensured stability, but also increased the speed of the inner loop to a point 

where the system behaved as if the linear outer loop was the true model of the dynamics. 

Ideally, we wanted the end-effector to mimic a simple linear system, so we used a high K2 

value. Experience showed that to get close to the desired linear system behavior required that K2 

be at least two orders of magnitude greater than K\. For our simulations, increasing K2 by much 

more than two orders of magnitude significantly increased the numerical integration time required 

for a typical maneuver. In a real system, the upper limit for K2 would be determined by practical 
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considerations. The controller would be implemented digitally, and as K% increased, the necessary 

sampling rate would increase. The upper limit of K2 would then depend upon the measurement 

rates and the computational speed of the controller. 

5.2  Free-Floating Case 

This section compares the performance of a free-floating SMM using variations on the basic 

SMM controller presented in the previous section. Recalling that the purpose of the controller is to 

steer the end-effector from one position to another along a prescribed path, performance is judged 

based on three metrics. The first is the speed with which the desired position is reached and main- 

tained, often referred to as the settling time. This provides a measure of the maneuver quality, since 

generally there will be some limit to the time allowed for the maneuver. At the least, a successful 

maneuver must have a finite settling time. The second metric is the actuator torque requirements 

during the maneuver, expressed as the magnitude of the torque vector. This is a measure of the ma- 

neuver cost. Often, the integral of torque vector magnitude is most important, especially for those 

torques which must be generated by thrusters. In this case, the metric is directly proportional to 

the total fuel expended. The peak torques during the maneuver can also be of interest, since they 

will affect the size of actuators required. The final performance indicator is the end-effector path 

during the maneuver. Since following a prescribed path can be essential to avoiding obstacles in 

workspace, the extent to which the end-effector deviates from this path is another important maneu- 

ver quality measure. The magnitude of the path error can be tracked throughout the maneuver and 

the integral of this error provides a convenient number for comparison. 

Formulae for the metrics are 

TimeMetric   =    / dt (228) 

TorqueMetric   =     / ||r|| dt (229) 
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PathMetric   =        \\rd (t) - r (t)\\ dt (230) 

where in each case the integration limits are from the maneuver start time to the maneuver end time. 

For the free-floating case, we considered three variations of the basic SMM controller. The 

first is the naive approach, using the inverse of the standard manipulator Jacobian to determine the 

joint velocity commands from the end-effector velocity command (i.e., "J_1" in Figure 17 indicates 

JJb). The second approach is to use the standard manipulator Jacobian, but modify the end-effector 

velocity command with base motion feedback. The last variation is to use the GJM to relate joint 

velocities and end-effector velocity(/.e., "J_1" in Figure 17 indicates J_1). 

The first option, using only the standard manipulator Jacobian, completely ignores the effect 

of the base movement induced by the moving arm. It will converge to the desired position as long 

as the manipulator Jacobian remains nonsingular. For tasks where point-to-point movement of the 

end-effector is the only concern, this controller may be sufficient. However, it generally results in 

significant deviations from the desired end-effector path, so it is unsuitable for tasks where precise 

path following is important. This option does have a few advantages. It is conceptually straight- 

forward, relatively low in terms of computational costs, and requires no information on the system 

mass properties. 

The second option is to retain the standard manipulator Jacobian, but feed back base velocity 

measurements. This method, known as reaction compensation control, was suggested by Spofford 

and Akin [41]. Using this method, the base velocity is measured and converted to an end-effector 

velocity using the forward velocity kinematic relations. The end-effector velocity command, rc, is 

formed from the difference of the end-effector velocity resulting from the base motion and the com- 

mand produced by Eq. (187). The joint velocity commands are then generated using the standard 

manipulator Jacobian. This method requires a more significant modification to the basic SMM con- 

troller than other methods. The block diagram in Figure 18 shows the addition of a third feedback 
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Figure 18. SMM Controller with Base-Motion Feedback 

loop.   This method has advantages similar to the first option and improves the tracking of the de- 

sired path. The reaction compensation controller variation also may fail if the manipulator Jacobian 

becomes singular. 

Another means of improving tracking over the standard manipulator Jacobian variation is to 

substitute the Generalized Jacobian Matrix for the standard Jacobian. Like the reaction compen- 

sation variation, this controller accounts for the effect of the moving base. In this variation, the 

momentum constraints are built into the GJM allowing the controller to "predict" the effect that 

the joint velocity commands will have on the base motion and compensate immediately. Generally, 

this variation should offer a quicker response to base motion effects than the reaction compensation 

method which uses current measurements of base motion. Using the GJM incurs a higher compu- 

82 



1.5 

S   °-5 

c 
o o 
Ü 

I > 

1-0.5 

-1.5 

\    A 

-1.5 -0.5 0 0.5 1 
Workspace X-Coordinate (m) 

1.5 

Figure 19. A Simple SMM Maneuver (Maneuver One) 

tational cost than the first two methods, since the system mass matrix must be computed at each 

step in addition to the kinematic Jacobian. The accuracy of this method also depends on the fidelity 

with which the mass properties of each body in the system are known. This variation is also vul- 

nerable to singularities. In this case, they are the dynamic singularities of the system rather than the 

kinematic singularities of the arm. 

To demonstrate the performance differences between the controllers, consider the following 

example. Given the two-link (RR) planar SMM described in Chapter 4 (see Table 1), suppose the 

desired maneuver is to move the end-effector from point A to point B along a straight line as quickly 

as possible, starting with the system configured as shown in Figure 19. This is essentially a step 

input to the end-effector position. 

The maneuver was simulated using each of the controllers in turn. To highlight the path- 

tracking differences in the controllers, the gains K\ and Ki were selected in each controller to give 
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Controller Variation K\     K2    J Torque (N-m-s)    / Path Error (m • s) 

Generalized Jacobian 0.75 50 17.14 0.0602 

Std. Jacobian w/Base Motion Fdbk 0.75 50 16.79 0.1147 

Standard Jacobian 2.00    50 18.26 0.2574  

Table 4. Controller Gains and Integral Metrics for Linear Trajectory (Maneuver One) 

approximately equal settling times. The gains are shown in Table 4. The end-effector position time 

history is given in Figure 20, showing the settling time of all three controllers to be about seven sec- 

onds. Interestingly, the torque requirements for performing this maneuver are also essentially equal. 

Figure 21 shows the root-sum-squared value of the j oint torques during the maneuver, and the inte- 

gral of these curves is given in Table 4. For each controller variation, the torque is initially high 

and then quickly drops off, just as one would expect for a step input. Each controller variation is the 

highest and lowest of the three at some time during the maneuver, but the integral metric indicates 

that all variations expend similar total levels of energy to complete the maneuver. 

The equal cost (torque integral) for equal performance (settling time) suggests that there is no 

important difference between the controllers. However, the third metric does reveal an important 

distinction between the controller variations. Figure 22 shows the end-effector path for each case. 

In this example, the end-effector is expected to move a straight line distance of about 0.7 meters, and 

the controller based only on the standard Jacobian swings up to 0.2 meters off the path at one point. 

The reaction compensation method fares better with a maximum path error of about 0.06 meters. 

The controller variation using the GJM provides the most accurate tracking of the desired path, with 

a maximum path error of less than 0.02 meters. The integral of the path error magnitude over the 

entire maneuver is given in Table 4, with this metric indicating that the GJM variation tracks twice 

as well as the reaction compensation variation and four times better than the naive variation. The 
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Figure 23. Circular Path Maneuver (Maneuver Two) 

improved tracking at no extra cost is a strong incentive for using momentum-constrainedJacobians 

when controlling SMMs with unactuated degrees of freedom in the base. 

We now consider a more complex maneuver. In this maneuver, the end-effector must follow a 

circular arc as shown in Figure 23. The path is to be traversed at a constant rate, arriving at the final 

point at time t = 10 seconds. This maneuver differs from the first both in the path type, circular as 

opposed to straight, but also in that it is position ramp input rather than a position step input. This 

is important because the initial accelerations are much lower in this maneuver than in the first. 

As before, the controller gains (Table 5) were tuned to equalize response times as much as 

possible. This is shown in Figure 24, which plots the distance of the end-effector from the final 

position at all times during the maneuver. Each controller guides the end-effector to a point about 

0.13 meters away from the desired final point at t = 10 seconds, and settles at about t = 15 seconds. 
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29.36 0.1537 

27.64 0.1577 

17.55 0.5282 

Controller Variation K\     K<i    j Torque (N' • m • s)    / Path Error (m • s) 

Generalized Jacobian 0.75 50 

Std. Jacobian w/Base Motion Fdbk 0.75 50 

Standard Jacobian 2.00    50  

Table 5. Controller Gains and Integral Metrics for Semi-Circular Trajectory (Maneuver Two) 

The time history of the torque magnitude for each controller is shown in Figure 25. The most 

obvious feature of this figure is the high torque of the controllers in the middle of the maneuver. 

This is caused by a critical point in the maneuver where the arm is folded back on itself (joint two 

near 180°), resulting in very poor manipulability of the arm. This condition is exacerbated by the 

base velocity causing the end-effector to move in nearly the opposite direction to what is required 

at this point in the maneuver. The result is that the two controllers which recognize the base motion 

effect make very large torque demands at this point in the maneuver. The naive controller reaches 

a peak due to the low manipulability but does not recognize the base motion conflict compounding 

the problem, so it has a much lower peak torque. The integrals of the torque magnitude are given in 

Table 5. 

The resulting end-effector paths are shown in Figure 26. The naive controller clearly gives 

very poor tracking throughout the maneuver, with significant deviations between 0.05 and 0.1 me- 

ters occurring at several points. The reaction compensation and GJM controller variations were bet- 

ter, both having consistent path errors of about 0.02 meters. The reaction compensation controller 

suffered a little more at the critical mid-point, deviating from the circular trajectory by about 0.04 

meters at this point, but the path error integrals given in Table 5 show that the latter two controllers 

tracked equally well overall. 

Examining the results of both example maneuvers, there is no clearly superior controller In the 

first example, the GJM variation is obviously best, providing the best path following with both other 
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metrics equal. However, in the second example, the benefit of the momentum-constrained Jacobian 

is not as clear. Compared to the controller using only the standard Jacobian, the GJM variation 

provides much better path following, but at a significant cost in torque requirement. The preferred 

controller would depend on the relative weight of the metrics in the overall design. The GJM vari- 

ation was actually slightly worse than the reaction compensation variation in the second example, 

requiring a little more torque for approximately equal tracking. The improvement of the reaction 

compensation method between the first and second examples can be attributed to the difference in 

the initial accelerations. In the first example, the outer loop controller demands a high acceleration 

of the end-effector. The reaction compensation controller reacts to the current base motion rather 

than predicting the effect of the j oint velocity commands. When the base motion is changing rapidly, 

the controller performs poorly. In the second example, the initial end-effector acceleration require- 

ment is much lower, resulting in lower base acceleration. The result is a significant improvement 

in tracking performance. Overall, the examples give only a slight edge to the GJM variation if all 

three metrics are of equal importance. However, if path following is a central concern over a variety 

of maneuver types, the GJM variation is the strongest choice. Since this will be true for many tasks, 

the GJM variation is considered the default free-floating SMM controller in subsequent sections of 

this work. 

Each of the controller variations discussed above had the disadvantage of failing at singularities 

of the appropriate Jacobian. To demonstrate how this can affect even simple maneuvers, we consider 

a third example. Using the same SMM, the end-effector starts again at point A and must move 

along a straight line to point D, as shown in Figure 27. Using the basic SMM controller with the 

GJM variation results in the end-effector path shown as dashed line in Figure 28. Note that the 

end-effector never reaches the desired final position. During the maneuver, the system encounters 

a dynamic singularity causing the joint velocity commands to approach infinity. Controlled by the 
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inner loop dynamics, the joints do not accelerate instantaneously to the commanded values, and as 

they ramp up, the primary component of end-effector motion is in a nonsingular direction. In the 

planar case, this means the end-effector accelerates rapidly in a direction nearly perpendicular to 

the singular direction. In an attempt to alleviate the effects of the dynamic singularity, Nakamura's 

Singularity-Robust Inverse (SR-inverse) [29] was used as an alternate means of inverting the GJM in 

the controller. The SR-inverse technique is similar to the pseudoinverse, but trades exactness of the 

solution for a more feasible solution in the neighborhood of singularities. The method is discussed 

in detail in Appendix D.I. Using the SR-inverse with the GJM produced the path represented by the 

solid line in Figure 28. The SR-inverse eliminates the excessive joint velocities, but the end-effector 

becomes trapped at the singularity and still does not reach the desired position. 

The inability to reach the desired position in Maneuver #3 must be acknowledged as a failure 

of the basic SMM controller and all of its variations. This is a common failure mode of controllers 
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which are based on inverting the manipulator Jacobian, and does not indicate that the target posi- 

tion is unreachable. Methods based completely in joint space are immune to this type of failure. 

By choosing an alternate trajectory in joint space, the end-effector can reach the desired point with- 

out encountering a singularity. The methods suggested by Reyhanoglu and McClamroch [39] or 

Nakamura and Mukherjee [30] offer the means of finding a possible trajectory. Unfortunately, both 

of these methods have two disadvantages. First, both methods are framed in joint space. As a re- 

sult, solving the inverse kinematics problem to determine the joint states corresponding to the target 

end-effector position must be the first step in planning a suitable path. We noted earlier that find- 

ing solutions to the inverse kinematics is often quite complicated for fixed base robots, and adding 

the 6DOF base further clouds the issue. Occasionally, closed form solutions do not exist and the 

problem must be solved numerically. Even with a closed form solution, the inverse kinematics rep- 

resents an additional computational load that must be addressed before starting the maneuver and 

precludes use in a teleoperated mode. Other computational requirements unique to each method are 

discussed below. The second major disadvantage of these methods is that neither method lends it- 

self to precise tracking of a desired path between initial and final points in a maneuver. Controllers 

based on these methods will cause the end-effector to deviate significantly from a straight line path, 

making them less desirable in obstacle-dense environments or for tasks that require smooth, precise 

paths. The unique aspects of each method are addressed below. 

Nakamura and Mukherjee's method is termed the "Bidirectional Approach" by the authors. 

The bidirectional approach synthesizes control inputs based on Lyapunov's direct method, using 

a quadratic form of the state (joint angles and attitude) errors as a Lyapunov function. A Jacobian 

similarto the GJM is used to relate the complete set of state velocities to the actuated state velocities. 

This Jacobian is constructed using the same momentum relations used in the GJM, but it does not 

include the kinematic relations between end-effector and system states.  The algorithm assumes 
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two identical SMMs form a single dynamic system. One SMM starts at the initial state and one 

system starts at the final state. The error function used in the definition of the Lyapunov function is 

the difference between the states of the two "halves" of the system. Guided by Lyapunov's direct 

method, the inputs are chosen to cause this error to converge to zero, forming a trajectory which 

starts at both ends of the desired maneuver and meets in the middle. This is the reason for the name 

of the method. 

Details of our implementation of the Bidirectional Approach are given in Appendix D.2. Al- 

though Nakamura and Mukherjee argue that this method has less chance of encountering the null 

space of the Jacobian (which corresponds exactly to the dynamic singularities of the SMM), we 

found that the end states must be chosen with care to ensure the method converges to a solution. 

The most serious disadvantage of the method, however, stems from the metrics with which we judge 

a controller. Our requirement that the end-effector follow a particular path between points is very 

difficult to meet using the bidirectional approach. This is best seen by example. Maneuver #3 rep- 

resents a worst case scenario, where we know the method must contend with a dynamic singularity. 

The dash-dotted line in Figure 28 shows the bidirectional solution to Maneuver #3. Clearly, this 

method does not satisfy the path following requirement. 

The Reyhanoglu and McClamroch algorithm consists of four steps. These steps can be asso- 

ciated with paths in joint space, as shown for a two-link SMM in Figure 29. In step one, the robot 

is driven to the desired joint angles without regard for the base attitude. This implies that the end- 

effector position is uncontrolled at this stage in the algorithm. At step two, a closed path in joint 

space is computed that will exactly change the base attitude by the difference between the desired 

attitude and the attitude resulting from step one. The computational requirement for this step is 

not excessive, but it must be met before the system can proceed. The manipulator joints are then 

driven to the nearest corner of the closed path (a rectangular circuit is suggested by the authors) in 
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Figure 29. Example Path in Joint Space Using Reyhanoglu and McClamroch Control Scheme 

joint space. Step three involves moving the joint angles through the previously computed closed 

path. Step four exactly reverses step two, leaving the system at the desired final state. Clearly, the 

end-effector path over the course of these four steps will be quite convoluted. Since this method 

obviously cannot precisely track a path between the initial and final points, its application to our 

example Maneuvers was not considered. 

The significant advantage of this method is that it is completely immune to the effects of sin- 

gularities. For this reason, it must be seriously considered if the path error metric is not a concern. 

This may the case if the controller is only required to perform point-to-point tasks in an obstacle-free 

environment. 

In order to find a suitable controller for performing tasks in all areas of workspace, including the 

Path Dependent Workspace, we must find another means of working around dynamic singularities. 

Since it was shown in Chapter 4 that dynamic singularities are eliminated by actuating the satellite 

base's attitude, we consider this approach next. 
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5.3  Base-Attitude Control (BAC) Case 

5.3.1   Simple BAC Controller 

The basic SMM controller can be used for an SMM with base attitude actuations with a few 

small modifications and assumptions. First, we assume that the actuation is provided in the form 

of external torques on the SMM. This implies the use of thrusters as the actuator type. The reason 

for this assumption at this point is that it allows us to focus on the advantages of base-attitude 

control without the concern of added dynamic effects that would result from using reaction wheels 

or control moment gyroscopes. Second, the variables 9 and 9C as used in the basic SMM controller 

block diagram (Figure 17) are now to be understood to include both the manipulator joint velocities 

and the base angular velocity. Finally, the Jacobian whose inverse is used to find 9C from rc is not 

the GJM, but rather a new Jacobian constrained only by the linear momentum equations. This is 

necessary since the system angular momentum is not conserved when the angular velocity is directly 

actuated. This form of Jacobian was developed in Section 4.6.2 (Eq. (142)). In the simple BAC 

controller, the inversion of the linear momentum constrained Jacobian is accomplished using the 

standard pseudoinverse solution. 

Let us now reconsider Maneuver Three (Figure 27). Using a free-floating SMM, this ma- 

neuver proved to be quite difficult. The GJM controller variation failed completely due to the dy- 

namic singularities, and although the bidirectional approach did allow the free-floater to reach the 

target point, it could not follow a straight line path. Using an SMM with the same inertial proper- 

ties (Table 1 in Chapter 4), but with thrusters providing base attitude actuation, the maneuver was 

simulated again with the sjmple BAC controller. The resulting end-effector path is shown in Fig- 

ure 30, along with the bidirectional path for reference. The SMM with base-attitude control has no 

singularity problems, and successfully tracks the straight line path to the target position. In addi- 
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Figure 30. End-Effector Paths For Maneuver Three Using Simple Base-Attitude Control And Bidi- 
rectional Approach 

tion, the base-attitude control incurs significantly lower torque costs11 as shown in Figure 31. The 

torque magnitude of the base-attitude controlled SMM shown in the figure includes the base torque 

as well as manipulator joint torques. The lower torque requirement combined with clearly superior 

tracking performance demonstrates the powerful advantage base-attitude control holds over all the 

free-floating methods. 

The most prevalent argument against base-attitude control is that the base torques may in fact 

be "costlier" than joint torques. Whereas joint torques are generated by electric motors which use 

a renewable energy source, creating large base torques with thrasters uses irreplaceable fuel. This 

translates to a much shorter life span or an enormous weight penalty in added fuel. A solution is to 

use the inherent redundancy when both base and arm are actuated to reduce the base torque require- 

ments. In the example above, a standard pseudoinverse was used to translate end-effector velocity 

11 Since the bidirectional approach is similar to a ramp input in that it does not require the large initial accelerations 
associated with a step response, the BAC controller was given a ramp input in generating the results shown in Figures 30 
and 31. This allows a fairer comparison of torque requirements of the two methods. 
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commands into joint and base-attitude velocity commands. This can result in excessive use of the 

base control. A weighted pseudoinverse is an obvious remedy, but cannot actually provide much 

help. A weighted pseudoinverse rewards or penalizes base motion without necessarily reducing base 

torque requirements. To see this, consider the effects of first an infinite penalty on the base velocity 

and then second, an infmitesimally small penalty on base velocity. In the first case, the controller 

would attempt to fix the base, which would require significant base torque to counteract the internal 

torque caused by moving the manipulator joints. In the second case, the controller would attempt 

to move the base at high rates, which would also require significant base torque. A novel solution, 

which we term Reduced Base Torque Control, is based on using the angular momentum relations 

with Nakamura's task priority method [29]. The details of the RBTC method are developed in the 

following section. 

5.3.2    Reduced Base Torque Control 

The central concept of reduced base-torque control (RBTC) is to control the SMM so that it 

performs much like a free-floater until a dynamic singularity is approached. At this point, attitude 

control is phased in to continue moving the end-effector smoothly through the troublesome region. 

This concept is implemented by choosing the joint space velocity command, 9C, using a multiple 

task priority method. The simple BAC solution is the first task, and is always given the highest 

priority. This ensures smooth motion of the end-effector, since this solution is unaffected by dynamic 

singularities as a result of the base control (recall the arguments in Chapter 4). The secondary task is 

to choose joint space velocities consistent with a zero angular momentum state for the system. For 

the rest-to-rest type of maneuvers expected for the SMM, system angular momentum will start and 

end at zero. Since angular momentum is conserved only if no external torque is applied, this task 

is equivalent to choosing system motion which does not require base control. If the second priority 
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task was completely met throughout a maneuver, the SMM would behave as if it were free-floating, 

and no base torque would be used. The commands resulting from the second task are in the null 

space of the first task, so they cannot adversely affect the end-effector path. 

To develop this method, we first define the system inputs, q, as the base angular velocity and 

the joint velocities, 

q = e 
(231) 

The first task is defined by the end-effector velocity, f, which can be given in terms of the inputs by 

the relation 

r = Jiq (232) 

where the task one Jacobian, J\, is defined by 

J1=[J„- JvP~lPu   Je - JvP^Pe ] (233) 

Recognize that J\ is the linear momentum constrained Jacobian for the SMM from Eq. (142). The 

second task is to choose q such that the system has zero angular momentum. The task two relation 

which corresponds to Eq. (232) for task one is 

0 = J2q ' (234) 

where 3% is 

J2 = [ Hw - HVP^P«   He - EvP~^Pe ] (235) 

The quantity J%q represents the total angular momentum (h) of the SMM from Eq. (109), also 

constrained by the linear momentum equation, Eq. (101) due to the lack of base translation actuation. 

Now Nakamura's method of choosing q according to task priority can be applied. Let q\ rep- 

resent the inputs required to accomplish task one, and & represent the additional velocity added to 

achieve task two. Then 

q   =   qi+q2 
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=   J*r-J*[j2J*f) 

=    (J*-Jfj2jf)r (236) 

where # denotes the pseudoinverse and J2 = J2{U - J*J\). This equation ensures that q2 is in 

the null space of J\, so that no velocity added for the second task interferes with the completion of 

the first task. See Ref [29] for the details of this method. 

The first priority task Jacobian, J\, does not have dynamic singularities, so these configura- 

tions cannot affect the smooth motion of the end-effector. However, using Eq. (236) can still lead to 

problems at dynamically singular configurations. At a dynamic singularity, it is impossible to arbi- 

trarily choose the system angular momentum using the null space of J\, or equivalently, J2 becomes 

singular. When the SMM approaches these configurations, accomplishing the second task without 

affecting the first task is only possible with very large inputs, so q2 approaches infinity. These in- 

puts do not affect the first task, but nonetheless are impractical at the least and very undesirable. To 

remedy this problem, the input from the second task can be constrained in magnitude while keeping 

the same direction. In essence, the system prefers a state of zero angular momentum, but may not 

always achieve it. This allows external torques to drive the system while near a dynamic singularity 

This concept leads to a new equation for the input velocities, 

q   =    qi+ kq2 (237) 

q   =    (j#-kJ*J2J\)r (238) 

where 0 < A; < 1. The system angular momentum resulting from this choice of q is greater than Eq. 

(236) (fc = 1 case), but is still less than not using the second task at all (k = 0 case). This can be 

proven by the following argument. 
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l# 

First, write the system angular momentum, h, in terms first of the input velocities, q, and 

ultimately, of the desired end-effector motion, f. 

h   =   J2q 

=    (u - kJ2jf\ J2jfr (239) 

Recall that J2 = J2 (u - jfj\) ■ The null space projection matrix, (u - jfj\\, is idempotent 

and symmetric. An identity from Nakamura states that if A € 5Rnxn is idempotent and symmetric, 

thenforanyßeSRm><n, 

(BA)* = A(BA)* 

Letting J2 = B and (u - J*Ji) = A, this identity provides the relation, 

J* = (J2 (u - J*J,))
#

 =(u- J**) (J2 (u - jfj,)) 

which can be premultiplied by J2 to give 

j2j* = J2(u- J#J^ (J2 (u - Jf Ji)) 

To simplify the notation, define a vector, x, and a matrix, A, by 

x   4   j2j#r 

A   4    (j^U-jfh))* 

Then using Eq. (242), Eq. (239) becomes 

h = (u - kA*A\ x 

This can be divided into two orthogonal components 

h=(u- A*A\ x + (l-k) A*Ax 

The magnitude of h is related to the magnitude of these components by 

(u - A*A) x||2 + | (1 - k) A*Ax 

(U - A*A^ X||
2
 + (1 - kf ^A*Ax 

i# 

(240) 

(241) 

(242) 

(243) 

(244) 

(245) 

(246) 

(247) 

(248) 

103 



Maneuver One Maneuver Two Maneuver Three 

Controller Variation Kx K2 Kx K2 Kx Ki 

RBTC 0.60 100 1.0 200 0.5 200 

Simple BAC 0.60 100 1.0 200 0.5 200 

GJM (Free-Floater) 0.75 50 0.75 50 - - 

Table 6. Controller Gains For Maneuvers One, Two, and Three 

Clearly, k = 1 minimizes \\h\\. This corresponds to fully completing task two. When A; = 0, \\h\\ is 

maximized with respect to k, given that 0 < k < 1. This corresponds to the pseudoinverse solution 

of the first task, with no regard for task two. 

The scale factor k is chosen dynamically, to aggressively perform task two when the system is 

not near a singularity of 32, and to avoid excessive values for q<i when near singularities of J2. A 

smooth function for k with these properties is the ratio of the current minimum singular value of J2 

to the maximum minimum singular value over all possible configurations. That is, 

SL (h W) 
k = /    /-       N\ (249) 

max^J2(0)JJ 

The denominator is a constant for a particular SMM, and can be calculated numerically in advance 

for use in the controller. The scale factor k will be near one when the system is near the most 

favorable configurations and be near zero when the system is near the singular configurations. 

The performance of the RBTC concept was investigated by simulating Maneuvers One, Two 

and Three using the RBTC and simple BAC controllers. For Maneuvers One and Two, the results 

are also compared to the free-floating GJM based controller. The controller gains were chosen to 

equalize the response times in the neighborhood often seconds. These gains are shown in Table 6. 

The end-effector paths for Maneuver One are shown in Figure 32. All three controllers per- 

formed adequately, but the RBTC and GJM variations had significantly lower tracking error than 

the BAC variation. The integrals of the path error, given in Table 7, indicate that overall,the RBTC 
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Figure 32. End-Effector Path For Position Step (Maneuver One) 

and GJM controllers had nearly identical tracking. The tracking error of the BAC controller was 

approximately twice the error of the other two controllers. The larger error resulted from a direct 

conflict between the natural base reaction to the arm and the base angular velocity command gen- 

erated by the BAC controller. All three controllers initially commanded positive joint velocities, 

which induced a negative base rotation in the free-floating SMM. The RBTC controller allowed 

this natural negative rotation to reduce base torque, while the simple BAC controller demanded a 

positive base rotation. Since the base was by far the largest body in the system, it takes longer to 

accelerate the base to its commanded velocity. This delay was the source of the tracking error. 

The total torque magnitude for each controller is shown in Figure 33. This magnitude is the 

root-sum-squared value for the two arm j oints and the base for the RBTC and BAC controllers, and 

for just the two arm joints for the GJM controller. The torque integrals are given in Table 7. Fortbis 

maneuver, the RBTC performed the best, but this level of advantage should not be expected in every 
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Figure 33. Total Torque Requirements For Position Step (Maneuver One) 

case. The differences in total torque depend on the particular maneuver, starting configuration, and 

overall level of manipulability during the task. Our experience suggests that when the robot stays in 

regions of high manipulability for an entire maneuver, the free-floating method can produce lower 

torque results. More frequently, maneuvers take the system into areas of poor manipulability, closer 

to dynamic singularities. The resulting high velocities require higher accelerations and ultimately 

make the free-floater more expensive than the simple base controlled approach in terms of total 

torque. The RBTC is best able to move between the two approaches and so used the least total 

torque over a variety of maneuvers, although the actual degree of improvement varied widely. 

By design, the RBTC controller was expected to yield an improvement in terms of base torque 

requirements. The base torque integral metric shows that the RBTC required less than a third of 

the base torque required by the simple BAC controller. Figure 34 shows the base torque history for 

each of the controllers. The initial negative spike in the RBTC base torque history is caused by the 
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Figure 34. Base Torque Requirements For Position Step (Maneuver One) 

lag in response between the inner and outer loops of the controller. The spike accelerated the base 

to the velocity consistent with the given joint commands and a zero (low) angular momentum state. 

Since a delay exists before the inner loop actually drives the joint to the commanded velocity, there 

is also a delay before momentum conservation drives the base to its commanded velocity. During 

this delay the inner loop recognizes the base angular velocity error and generates a momentary base 

torque. This combined effort to drive the base to its "natural" velocity explains why the spike is so 

short-lived. A more sophisticated version of the RBTC algorithm (perhaps inhibiting base torque 

for the first few controller cycles at the beginning of a maneuver) could eliminate this spike without 

significantly affecting the performance. 

The results for Maneuver Two are given in Figures 35 through 37 and Table 8. For this ma- 

neuver, the tracking and total torque metrics are more even across the three controllers. The main 

performance difference between maneuvers One and Two is that due to the manipulability prob- 
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Controller Variation J Total Torque 
(N-m-s) 

J Base Torque 
(Nrn-s) 

/ Path Error 
(m-s) 

RBTC 15.30 5.475 0.0513 

Simple BAC 22.98 19.56 0.1194 

GJM (Free-Floating) 17.14 0.0 0.0602 

Table 7. Integral Metrics for Maneuver One 

lems of the free-floater in Maneuver Two, the simple BAC controller performs better than the GJM 

controller. Also note that with the lower initial accelerations required by this position ramp type 

maneuver, the tracking of the simple BAC controller is very comparable to the RBTC controller. As 

before, the base torque is significantly lowered by using the RBTC controller. 

For Maneuver Three, only the RBTC and BAC controllers are shown, since it was seen earlier 

(Figure 28) that the free-floating controller options could not seriously compete in cases where 

dynamic singularities are present. Figures 38-40 and Table 9 show results similar to the results 

of Maneuvers One and Two. Total torque was comparable, with only a slight edge to the RBTC 

controller. The tracking error was significantly lower for the RBTC controller, as expected for a 

position step input like Maneuver One. The base torque requirement for the RBTC was less than 

half of the requirement for the simple BAC controller. 
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fYmtrnlW Variation       /Total Torque      /Base Torque      /Path Error Controller Variation (N:m.s) (N-ms) (ma) 
RBTC 22.72 12.06 0.1126 

Simple BAC 25.14 22.57 0.1254 

GJM (Free-Floating) 29.36 0.0 0.1537 

Table 8. Integral Metrics for Maneuver Two 

rnntrnller Variation       /Total Torque      /Base Torque      /Path Error Controller variation       (N.m.s) (N-m-s) (ma) 

RBTC 

Simple BAC 

29.30 

32.56 

12.07 

28.30 

0.0759 

0.1433 

Table 9. Integral Metrics for Maneuver Three 
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5.4 Summary 

In Chapter 5, we extended the comparison of free-floating and base attitude control concepts 

by examining their performance in simple maneuvers, using a newly developed SMM controller. 

The new controller was designed to allow the incorporation of each of the control concepts without 

major modifications. The simulation results support several important conclusions: 

1. Momentum constrained Jacobians provide better tracking than fixed base manipulator 

Jacobians, even when base motion feedback is used. 

2. Free-floating control concepts using the GJM can fail in the neighborhood of dynamic 

singularities, even when using Nakamura's Singularity-Robust inverse. 

3. Free-floating control concepts which rely on joint space trajectory planning methods are not 

well suited to tasks where precise path following is required. 

4. The Base-attitude control concept performs well throughout reachable workspace in tracking 

and time response, but can result large base torques. The method is unaffected by dynamic 

singularities. 

5. Base torque cost, in terms of the integral metric can be significantly lowered using the new 

Reduced Base-Torque Controller (RBTC). 

113 



Chapter 6 - Base Attitude Control Using Control Moment Gyros 

The primary goal of this work is to demonstrate the importance of base control in an SMM 

system. Spacecraft attitude control can be accomplished by many means, both passive and active. 

However, to implement the envisioned base control concept, a powerful active attitude controller 

is required. There are two classes of actuators powerful enough to be considered viable options: 

thrasters and momentum exchange devices. Momentum exchange devices hold two distinct advan- 

tages overthrusters. First, they are more capable of providing smooth and precise input. In the base 

attitude control concept, spacecraft attitude is equivalent to the first joint of the manipulator. As 

such, it must be closely controlled to ensure proper end-effector motion. Second, momentum ex- 

change devices use renewable electrical power instead of consuming fuel. Over the lifetime of an 

SMM, this advantage could result in very significant mass savings. 

Momentum exchange devices are generally divided into two types: reaction wheels (FW) 

and control moment gyros (CMG). CMGs are preferable to reaction wheels because of their large 

torque capability, which allows lower weight, power, and size requirements for the same perfor- 

mance [4]. Among CMGs, one can choose between double-gimbaled control moment gyros and 

single-gimbaled control moment gyros. Single-gimbaled CMGs are commonly chosen over double 

gimbaled CMGs because of their relative mechanical simplicity and their advantage of transmitting 

the output torque through gimbal bearings rather than through a gimbal motor [24,36]. A disadvan- 

tage of single-gimbaled gyros is that for any cluster, there exist gimbal configurations at which an 

instantaneous loss of torque capability in some direction occurs. These gimbal configurations are 

known as singularities of the cluster, and can cause significant difficulties in controllers that are not 

designed to handle them. 
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In this chapter, we incorporate single-gimbaled CMGs into our earlier dynamic models and 

controllers. We consider the problem of cluster singularities and demonstrate the interaction be- 

tween the SMM controller and the singularities through a simulated three-dimensional system. We 

introduce a new controller which avoids both gyro singularities and SMM dynamic singularities. 

Similar to the RBTC controller of Chapter 5, this controller uses a secondary task based on angular 

momentum to move smoothly between the base-controlled and free-floating modes of operation. 

6.1  Adding a CMG Cluster to the n-Link SMM Model 

6.1.1   Dynamic Model 

A typical single-gimbaled CMG consists of a rotor mounted on a gimbaled frame, as shown 

in Figure 41. The rotor is spun at a constant high rate about its symmetric axis, generating a large 

fixed magnitude angular momentum vector. The direction of this momentum is varied by rotating 

the gimbal. A cluster of CMGs is used to create a variable source of angular momentum in the 

body frame. By controlling the cluster momentum a mechanism for spacecraft attitude control is 

provided. Since the cluster is fixed to the spacecraft base, changes in the cluster momentum induce 

equal and opposite changes in the spacecraft momentum. These angular momentum changes affect 

the spacecraft motion in a manner similar to external torques, although significant nonlinear effects 

are also introduced. 

Adding a cluster of m CMGs to the n-link SMM model of Chapter 3 significantly increases the 

complexity of the system model. Each CMG adds two DOF and one or two rigid bodies, depending 

on whether the mass of the gimbal frame is included. A straightforward application of Lagrange's 

equation would result in 2m additional 2nd-order equations of motion, or Am additional lst-order 

state equations.12 However, in many analyses of CMG dynamics [3,11,16,36], the cluster equations 

12Many of these equations are unnecessary. Ford and Hall [ 10] provide a comprehensive treatment of the equations of 
motion using an Euler-Newton based approach, which results in 2m lst-order state equations for a cluster of m SGCMGs. 
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Gimbal Axis 

Figure 41. Single Gimbal Control Moment Gyro 
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of motion are simplified by retaining only the most dominant effects. Taking this approach, only 

m lst-order state equations are necessary, and the SMM equations of motion derived in Chapter 3 

remain largely unchanged. This simplification does not change the essential nature of the cluster 

singularities, and is adequate for our study of the interaction between CMG singularities and ma- 

nipulator singularities. 

Consider an SMM with a cluster of single-gimbal gyros. The total angular momentum of the 

system, h, may be written in the spacecraft body frame as 

h = MWVQ + MwLü0 + MuB6 + hcMG (250) 

where v0, UJ0, and 9 are the linear velocity of the base center of mass, the base angular velocity, and 

the arm joint velocities, respectively. The matrices M^, Mu, M^o are submatrices of the system 

inertia matrix defined by Eqs. (60), (58), and (62) in Chapter 3, and /ICMG is the total angular 

momentum of the CMG cluster. 

Differentiating Eq. (250) with respect to the inertial frame gives 

h = Muvvo + MUCJO + MuoÖ + M^VQ + Mww0 + Mwd6 + hCUG + u$h        (251) 

When there are no external torques on the SMM, the total angular momentum of the system is 

constant, so h = 0. Then substituting Eq. (250) into Eq. (251) and rearranging terms gives 

Mwvv0 + Mwü>o + Muo'G 

+ (Mwv + UJ*Mwv\ vQ 

+ {^M^e+^oM^ö)ö   =   -hcMG -WO^CMG (252) 

By defining C submatrices with the relation Cx = Mx + w£ Mx, this can be shortened to 

Muvv0 + Mo,w0 + Muee + Cuvvo + C^CJO + CuoO= -hcMG - v£ hcuo        (253) 
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The lefthand side of Eq. (253) is identical to the angular velocity equations of motion derived 

earlier in Chapter 3. The right-hand side contains the terms related to the CMG cluster, forming an 

expression for the "effective torque" on the SMM base, 

Tu> = -hcuG — WQ hcMG (254) 

In Chapter 3, the complete equations of motion for the SMM were derived in the form 

(255) 

using a Lagrangian approach based on the kinetic energy of the system. Let us now consider how 

the kinetic energy is changed by introducing the gyro cluster. The kinetic energy is the sum of the 

kinetic energy in the base satellite, the manipulator links, and the CMG rotors (the gimbal mass is 

neglected). 

T = TsMM + Trotors (256) 

The first term was developed in Section 3.3.5. The rotor term can be written 

Mv Mvul Mve vo Gv ^VUJ Cve vo Tv 

Mwv M„ M^e Ü0 + G^V Gil) C^e IJJQ = TUJ 

Mev Mew Me e c$v Ceu Ce 9 re 

-•■rotors — 2_j   3 

J=l 

(257) 

1 '      1 (258) 

(259) 

where the energy of the jth rotor is 

Ti 

The velocity of the rotor center of mass, v,-, is given by 

Vj = v0 + u?o x Pj 

where pj is the position of the rotor center of mass relative to the base center of mass. This position 

is fixed in the To frame. The angular velocity of the rotor, or,-, is given by 

UJ = u>o + w0 (260) 

where u;0 is the angular velocity of the rotor-fixed frame relative to the base fixed frame. The 

relative angular velocity, w0, includes the spinning of the rotor about the spin axis and the gimbal 
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rotational velocity. Substituting equations (259) and (260) into (258) and expanding, the kinetic 

energy of the jth rotor becomes 

Tj   =   2mi [Vo • vo + 2v0 • (wo x pj) + (w0 x Pi) • (w0 x p,-)] (261) 

1 
+2 

w0 • Ij • UJ0 + 2U3Q ■ Ij ■ w0 + u>0 • Ij ■ w0 

Examining Eq. (261) reveals the necessary changes to the equations of motion. Since the rotor mass 

and position are constant in the body frame, the terms in the first set of brackets may be incorporated 

into the definition of the inertia submatrices Mv, Mvu}, and Mw, respectively. This is a simple matter 

of including the mass and center of mass position of the rotors when computing the mass and inertia 

of the spacecraft base. By extension, the submatrices Cv, Cvw, CU, and Cw are also revised. The 

terms in the second set of brackets in Eq. (261) are associated with the terms hcMG and U>Q hcuo 

in Eq. (253). The simplified model of the cluster momentum referred to earlier is equivalent to 

completely neglecting the energy term uo ■ Ij • w0 and neglecting the gimbal velocity contribution 

in wjj. None of the terms in Eq. (261) involve arm joint positions or velocities, so the third row of 

Eq. (255) and all of the 0-submatrices are completely unchanged. The result is that the equations 

of motion for the SMM with a CMG cluster may be written as the 6 + n second order equations 

(262) 

Eq. (262) does not constitute a complete model of the system dynamics. The dynamics of the cluster 

angular momentum, hcuG, is also required, since it is required to compute the effective torque, f w. 

In general, the dominant portion of the cluster angular momentum is the sum of the angular 

momenta of each rotor about its spin axis. The orientation of this axis in the body frame depends 

only on the associated gimbal angle, so that the cluster momentum can be written in the body frame 

Mv Mvu} Mv6 vo Gv l^vu CV8 v0 0 

Mwv M„ MW0 Wo + G(jjv Cu Cwg w0 = To, 

MBv M6ül Me e Cdv Cow C6 9 re 

119 



as 

hcMG = [hi (4>i) + h2 (02) + ... + hm (cßj] hr (263) 

where hr is the magnitude of the angular momentum of a single rotor about its spin axis, and the hi 

are unit vectors in the direction of the spin axis. This expression neglects the relatively small portions 

of cluster momentum associated with the gimbal velocities, 4>, and the spacecraft angular velocity, 

wo- Some of the terms involving u0 are simply incorporated into the analysis by ensuring that the 

mass and mass center of each CMG is included in the mass and inertia matrix of the spacecraft base. 

Based on the expected operating range of gimbal rates and spacecraft angular velocities, the CMGs 

can be designed such that hr is much larger than any of the neglected terms, so that the momentum 

computed using Eq. (263) does not differ significantly from the true momentum of the cluster. 

The time derivative of the cluster momentum with respect to the spacecraft body frame is 

heue = D{4>)4> (264) 

where D (0) is the Jacobian matrix 

£(</>) = 
A dhcuG dhj_     dhz     dhi 

d<p1      d<p2      303 (265) 
d<j> 

The problems of maintaining a constant rotor spin rate and quickly achieving desired gimbal 

rates can be addressed independently, allowing the gimbal rates, 0, to become the lowest level com- 

mand input for the spacecraft attitude control. Then the m first-order equations required to complete 

the model of the system dynamics are the trivial equations 

<t> = </>CMD (266) 

6.1.2   SMM Controller Using SGCMG Cluster for Base Actuation 

In modifying the basic SMM controller of Chapter 5 for use with a CMG cluster, we begin by 

eliminating the base linear velocity equations from Eq. (262) as before (see Appendix A). By using 
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Figure 42. Controller for SMM with CMG Cluster 

the linear momentum conservation relations, Eq. (262) can be reduced to 

Mq + Cq = f 

where 

<? = 
w0 

0 

and 

r = "To; 

L  Te   J 

(267) 

(268) 

(269) 

Eq. (267) is functionally equivalent to Eq. (189) in Chapter 5, so the basic SMM controller 

may still be applied. However, the control law Eq. (195) dictates r, and the control inputs for the 

SMM with CMG system are TQ and 4>. The relation between the gimbal rates, </>, and the effective 

torque, fw, must be incorporated into the controller. The gimbal rates necessary to impose fu are 

found by solving Eqs. (254) and (264) for <j>, 

4> = -D-l(fw+u* hCUG) (270) 

The result is the controller shown in the block diagram in Figure 42. 
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6.2  TheEffect of CMG Cluster Singularities 

Examining Eq. (270) it is clear that if D (0) becomes singular, no solution for 0 will exist. 

Singularities of D (0) are termed CMG cluster singularities, or simply CMG singularities. These 

are configurations of the gimbals in which there exists some direction for which no torque can be 

generated. These singularities are analogous to kinematic singularities associated with a manipulator 

Jacobian, where at certain joint configurations, no end-effector motion can be generated in some 

direction. 

In order to examine the effect of CMG singularities on the operation of an SMM system, we 

consider a simple three-dimensional SMM, consisting of a three-link elbow manipulator mounted 

on a satellite base, as shown in Figure 43. Base attitude control is generated by a cluster of three 

SGCMGs, mounted inside the base in an orthogonal configuration, as shown in Figure 44. The 

simplified expression for cluster angular momentum, in which only the dominant terms have been 

retained, can be written in the base frame as 

/ cos (02) + sin (03) \ 
hcuG= I   sin(<f>1) + cos (<f>2)   \hr (271) 

V cos(03)+sin(02) ) 

The physical parameters of the example SMM are given in Table 10. 

The CMG Jacobian matrix associated with the example SMM is found by substituting Eq. 

(271) into Eq. (265), giving 

D{<t>) = 
- sin (f>1 0 COS 03 

COS0J — sin 02 0 
0 COS 02 — sin 03 

(272) 

The simple geometry of this three CMG cluster enables one to easily find many singular configura- 

tions. One example of a singular CMG configuration for the given cluster geometry is 02 = 7r/2, 

02 = 0, and 03 = any value. In this configuration, there is no choice of gimbal velocities that can 
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Figure 43. Satellite with Three-Link Elbow Manipulator 
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Figure 44. Orthogonally Mounted Three-CMG Cluster 

Table 10. Physical Parameters for SMM with Three Link Elbow Manipulator 

Body    I (kg ■ rri2) m (kg)    I (m) 
0 diag{166.67,166.67,166.67} 1000 1 
1 diag{0.0785,0.3665,0.3665} 15.71 0.5 
2 diag{0.1571,2.6965,2.6965} 31.42 1 
3 diag{0.1571,2.6965,2.6965} 31.42 1 
Rotor Momentum: hr = 15.71 kg ■ mz/s 
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move the cluster angular momentum vector in the t/o-direction. The yo-component of the cluster 

angular momentum has reached the maximum possible magnitude. Many such singular configura- 

tions exist, forming a manifold in gimbal space. The common feature of these configurations is that 

they all represent the maximum possible magnitude of the cluster momentum in a particular direc- 

tion. When the angular momentum of the cluster cannot be increased in some direction, no torque 

can be generated in this direction as long as the cluster configuration remains unchanged. Returning 

to the robot analogy, the singularity manifold is analogous to the workspace limit of a robot. Just as 

the manipulator Jacobian becomes singular at the workspace limit, the CMG cluster becomes sin- 

gular when it reaches its torque production limit. Furthermore, in the same way that a redundant 

manipulator can encounter singularities inside its workspace, a CMG cluster containing more than 

three CMGs may encounter singularities before reaching a torque production limit. Indeed, in the 

CMG literature, singularities are divided into interior and outer singularities. Extensive research 

has been done in the area of CMG singularities, including important early work by Margulies and 

Auburn [24] and more recent work by Paradiso [36], Bedrossian et al. [3], and Ford [9]. These 

researchers studied methods of exploiting redundancy in the cluster to avoid interior singularities. 

Many of these methods are similar to those used for avoiding manipulator singularities in kinemat- 

ically redundant robots. Our example system does not use redundancy in either the manipulator or 

the cluster, instead focussing on the redundancy which results from the interaction of the two. 

The discussion above suggests that for a nonredundant CMG cluster, the singularities may be 

regarded as the "saturation'' of the spacecraft attitude actuator. This insight motivated our investiga- 

tion of the relationship between the occurrence of CMG singularities and the level of effort required 

from the cluster during a typical maneuver. Consider how the CMG configuration changes in re- 

sponse to a position step command. At the beginning of the maneuver, we assume the CMG cluster 

is in a zero momentum state. At first, the position error is large, causing the controller's outer loop 
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to generate laige command velocities for both the arm joints and the spacecraft angular velocity. 

The high angular velocity command dictates a large effective torque command, and ultimately, high 

CMG gimbal rates. The angular momentum of the CMG cluster begins to increase, approaching a 

maximum which will coincide with a singular condition. At some point in the maneuver, the po- 

sition error decreases, leading to lower angular velocity commands and subsequently reducing the 

demands on the CMG cluster. Eventually, the cluster returns to a zero momentum state, far from a 

singular configuration. 

True singularity problems arise only if the CMG cluster reaches a singular configuration (sat- 

uration point), causing the controller to request infinite gimbal velocities. In a step response, the 

initial peak demand on the CMG cluster will depend on the step size and the desired response time. 

If the position step command is too large or the outer loop gain, K\, is set too high, the CMG cluster 

will encounter a singularity. 

For example, consider the SMM of Table 10 with the controller from Figure 42 given a position 

step command in which the end-effector begins at Ti = (1.414,0.0,1.0) and is commanded to 

move to Tf = (1.0,0.0,1.5) . The relation between the outer loop gain and the CMG cluster 

singularity measure (the determinant of D (<(>)) is shown in Figure 45. If the outer loop gain was 

set to a value slightly higher than K\ = 0.12, the CMG cluster would encounter a singularity 

when commanded to perform this simple position change. The corresponding end-effector position 

response is shown in Figure 46. Varying the step size using a constant value for K\ results in a similar 

effect as seen in Figure 47. Step sizes marginally greater than 0.81 meters cause the CMG cluster 

to reach a singularity before completing the maneuver. The corresponding end-effector response is 

shown in Figure 48. 

In both cases, high gains or large steps, the controller initially demands high angular acceler- 

ation of the spacecraft base. This requires a large initial torque, and when the CMG cluster is too 
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small to provide the peak torque required, it will saturate and become singular. This relation be- 

tween speed of response and CMG singularities has been noted previously in studies of spacecraft 

attitude control by Hoelscher and \&dali [ 11 ] and Bedrossian et al. [3]. 

6.3  Controlling For Singularity Avoidance 

6.3.1   Avoiding CMG Singularities 

From these examples, it is apparent that in order to avoid CMG (outer) singularities, one must 

decrease the peak load on the CMGs. One way is to reduce the K\ gains, but this will also in- 

crease the overall response time to any step input. A second option is to use the system redundancy 

provided by base control. Recall that in Chapter 5, we introduced the Reduced Base-Torque Con- 

troller (RBTC) and showed that it could decrease the base torque required for a maneuver. The 

fundamental idea of the RBTC was to mimic a free-floating SMM unless a dynamic singularity was 

encountered, at which point the base actuation would be phased in to eliminate the dynamic singu- 

larities. Under this philosophy, the base actuation is used only when necessary. While this appeared 

promising for the CMG singularity problem, our simulation experience shows that the RBTC is not 

a reliable means of avoiding CMG singularities. The reason is that although the RBTC tends to 

lower base torque for maneuvers in an integral sense, it does not generally lower peak base torque 

requirements. In fact, the peak torque requirement is frequently higher than that demanded by the 

basic controller. If thrusters are the primary base attitude actuators, the chief concern is saving fuel. 

Fuel usage relates directly to the integral of the torque, so the high peak torque is of less importance. 

However, when using CMGs for base actuation, lowering the total impulse may be beneficial in the 

sense that less total energy is consumed, but the most significant concern is avoiding the singular 

configurations, since these can cause a failure of the controller. Encounters with CMG singulari- 

128 



ties are related to the peak torque requirements, so RBTC is not an appropriate choice of controller 

when using CMGs. 

Although the RBTC is not suitable for CMG singularity avoidance, the redundancy arising 

from base control can still be exploited. However, instead of using base actuation sparingly, the 

CMG cluster must be considered an equal partner with the manipulator joints in driving the end- 

effector. Rather than phasing in base actuation to counter dynamic singularities, base actuation is 

only phased out when necessary to counter CMG singularities. This constitutes a fundamental shift 

in the way system redundancy is used, but is easily justified in the new context. The electric motors 

which power CMG gimbals are essentially equivalent to the arm joint motors, whereas thrusters are 

quite different in nature. 

This strategy can be implemented by choosing appropriate joint space command velocities, qc, 

in the outer loop of the SMM controller. The controller generates a command for the end-effector 

velocity using the Resolved Motion Rate Control approach. The end-effector velocity is related to 

the j oint space velocities through a Jacobian, 

r = Jq (273) 

where 

(274) CJ0 

6 

for a base attitude controlled SMM. Choosing q to achieve the desired r requires some form of 

inversion of Eq. (273). In the block diagram shown in Figure 42, the inversion is represented by 

the " J'1" block. However, a simple matrix inverse is not actually used in most of the controllers 

we have considered. In developing the RBTC in Chapter 5, q was formed by summing two "tasks" 

q = qi+ kq2 (275) 

where 

gi = J*r (276) 
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represents the minimum norm (pseudoinverse) solution to Eq. (273) and 

q2 = J*J2J*r (277) 

represents the additional joint space velocity needed to produce the free-floating solution. The 

definitions of J\, J% and J2 are given in Section 5.3.2. The difference between the RBTC and the 

controller required for effective use of the CMG cluster lies in the method of choosing the scale 

factor k in Eq. (275). Since the CMGs are to be used equally with the arm joints whenever the 

cluster is not near a singularity, k should have a nominal value of zero. As the cluster approaches a 

singularity, k should increase. This will produce a q which is closer to the solution for a free-floating 

SMM, and effectively reduce the need for the CMGs. Since q is still an exact solution of Eq. (273), 

this does not affect the end-effector velocity, r . Therefore, this method does not penalize the system 

response time as would a method based on decreasing K\. 

An algorithm for k was heuristically determined, motivated by the thoughts above. First, a 

basic measure of CMG cluster singularity is computed as 

d=|det(£>(0))| (278) 

The maximum value of d is one, which occurs when the spin axes are mutually orthogonal, and the 

minimum value is zero. This measure is then used in the formula 

*-'-(;£;) (279) 

where the constants a and e were chosen to shape the k (d) function suitably. This algorithm provides 

a smooth relation between the CMG cluster singularity and the scale factor k, ensuring it is near zero 

over a wide range of CMG gimbal configurations but quickly rises when the cluster approaches a 

singularity. Figure 49 shows the k(d) curve for the values a = 50, e = 0.0001, which provided good 

results in our experience. The controller formed by taking the SMM (with CMGs) controller from 
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Figure 49. Free-Floating Task Scale Factor vs. CMG Cluster Singularity 

Figure 42 and using Eqs. (273)-(279) to convert end-effector velocity commands to joint commands 

(the " J_1" block) is termed the CMG Singularity Avoidance (CSA) controller. 

Consider the simple point-to-point maneuver used in the earlier example. From the trend seen 

in Figure 46, it would appear that increasing the outer-loop gain to K\ = 0.14 can be expected to 

improve the response time compared to the response with K\ = 0.12. However, using the basic 

controller with this gain, the system encounters a CMG singularity before completing the maneuver. 

This could be reasonably predicted by examining Figure 45. Using the CSA controller, the outer- 

loop gain can be increased dramatically to perform the maneuver much faster without encountering 

a CMG singularity. Figures 50 and 51 compare the responses of the basic controller with K\ = 0.12 

and the new controller using K\ = 0.24. The new controller gives a greatly improved response 

time even though the minimum value of the singularity measure is higher than that of the basic 

controller. This is a result of the system's increased use of the arm joints, as shown in Figure 52. 
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When the system approached the CMG singularity, the CSA controller responded by making the arm 

joints take on a larger share of the load. The commanded joint space velocities not only ensure that 

the end-effector velocity is maintained, but also induces the CMGs to move back towards a zero- 

momentum configuration and away from the singular configuration. This can be seen in Figures 

50 and 51, where the end-effector velocity (position slope) is still high at t « 2 seconds, while the 

CMG singularity measure has already begun to increase. If the scale factor k increased to one, the 

CSA controller would command joint space velocities corresponding to an SMM zero momentum 

state and the CMG cluster would be forced into its zero momentum state as well. This does not 

actually occur, because as the CMG moves away from the singular configuration, the scale factor k 

decreases according to Eq. (279). 

132 



0.8 

0.7 

ö5 0.< 

SO.! 
0) 

3 

iS 0.* 

i 0.3 

ü 
O0.i 
o 

0.1 

 ! 1 !       I               !              I               I               1 

/     /      ■ 

1:1. 

/:                                        :                          :             : / / :                                                                                 : 
l    :                                        :             :             :             : 

/'                                                                                      : 
//       :             :             :             :      : 1 i ;  

i           :::::::             : 
•- 

 K1 = 0.24, CMG Singularity Avoidance 
-- K1 =0.12, No Singularity Avoidance .- 

i                  I                  i          ..._i 1 1 1 1  
10 15 20 25 30 35 40 45 50 

Time (sec) 

Figure 51. CMG Cluster Singularity Measure For Controllers With And Without CMG Singularity 
Avoidance Term 

i 1 r 

1.5 

0.5 

..JpintTiirae....; 

• K1 = 0.24, CMG Singularity Avoidance 
K1 = 0.12, No Singularity Avoidance 

: Joint One 

-0.5 
Joint Two 

<|l i i i i 1 1— 1 1 1  

0 5 10 15 20 25 30 35 40 45 50 
Time (sec) 

Figure 52. Joint Motion Using Controllers With And Without CMG Smgularity Avoidance Term 

133 



6.3.2   Avoiding Combined Singularity Conditions (Dynamic and CMG Cluster) 

The example above demonstrates the singularity avoidance properties of the CSA controller. 

However, we know from Chapter 4 that a free-floating mode of operation introduces the possibility 

of encountering dynamic singularities. Since the CSA controller seeks to emulate the free-floating 

mode when near CMG singularities, it is imperative that we consider the possibility that the system 

may encounter both types of singularities simultaneously. If this were to occur, the second term 

in Eq. (275) would approach infinity, leading to excessively high joint velocity commands. The 

trajectory chosen in the example lies entirely within the Path Independent Workspace of the SMM. 

Therefore, there was no danger of approaching a dynamic singularity while using the free-floating 

mode to avoid CMG singularities. For a more rigorous test, we consider another trajectory which 

will force the system into configurations where dynamic singularities can occur. The new trajectory 

begins at the same point as the first, n = (1.414,0.0,1.0)T, but ends at rf = (1.5,0.0, -1.0)T. 

In order to judge how close the system is to a dynamic singularity, a metric must be chosen. A 

dynamic singularity was defined as a configuration of an SMM where the GJM becomes singular. 

Physically, these are configurations at which there exists no joint velocity set that can create an 

end-effector velocity in the singular direction. This occurs when the effects of the joint motion and 

the corresponding momentum conserving base motion exactly cancel. At these configurations, the 

secondary task Jacobian, Ji, also becomes singular. Since this matrix is computed for use in Eq. 

(275), it is convenient to base our dynamic singularity measure on it. The matrix 3i is not square, 

so we cannot use its determinant to measure closeness to a singular configuration. The minimum 

singular value is a possible metric, but it can have a discontinuous slope because of its definition. 

To circumvent this problem, we chose the product of the singular values as our dynamic singularity 

measure, normalized against the maximum possible value over all configurations, to give a value 
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between zero and one. The measure is represented by c, and is computed by 

3 

rw-M*)) 
i=i 

max ( f[ <n{h iß)) 

(280) 

Using the new trajectory the CSA controller was simulated with various outer loop gains. Be- 

cause of the greatly increased size of the position step compared to the earlier trajectory the CMGs 

quickly approached a singular configuration even when a relatively low gain (K\ =0.10) was used. 

By design, the controller then shifts to a nearly free-floating mode of operation. Since the outer loop 

gain affects how quickly the CMGs saturate, it also determines how quickly the task must be shifted 

primarily to the arm joints. As the system is forced to move the end-effector over greater distances in 

a quasi-free-floating mode, the likelihood of encountering dynamic singularities increases. Even- 

tually, this places an upper limit on the outer loop gain that can be used in the controller for this 

maneuver. Figures 53 and 54 show the dynamic singularity measure and end-effector response for 

selected outer loop gains. For gains greater than K\ = 0.185, the system encountered a dynamic 

singularity at about t = 15 seconds, causing the arm joint velocity commands to approach infinity. 

To solve the problem of simultaneous CMG and dynamic singularities, we recall the two basic 

options noted for avoiding CMG singularities: slowing the response and emulating a free-floating 

SMM. The preferred option was to phase in the free-floating mode by increasing the scale factor 

on the second term of Eq. (275), thus preserving the response time. However, when a dynamic 

singularity is approached, the second term explodes. This is unacceptable, so the logical alternative 

is to "turn off" the second term when near a dynamic singularity. In this case, we must resort to 

the other option of avoiding the CMG singularity, slowing the response time. The system response 

behavior can be varied dynamically by adding a new scale factor to the first term in Eq. (275) as 
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CMG Singularity 
Dynamic Singularity Near Far 

Near 
fciLOW 
fc2LOW 

ifcifflGH 
Jfc2LOW 

Far 
fciHIGH 
Ä;2fflGH 

fciHIGH 
fc2LOW 

Table 11. Discrete Function For Scale Factors vs.Singularity States 

well, giving 

q = k1qi + k2c[2 (281) 

The values for the scale factors can be visualized for four discrete states of the system, based on the 

nearness of the system to CMG and dynamic singularities, as shown in Table 11. Note the nominal 

state, far from all singularities, is to use CMG cluster and arm joints equally, which is represented 

by the first term of Eq. (275). 

Rather than incorporate discrete decisions into the continuous controller, the following algo- 

rithm was generated to determine qc from rc. First, the basic singularity measures c and d are com- 

puted using Eqs. (280) and (278). Then these basic measures are shaped to provide the desired 

discrete-like form using the formulas 

/    „    \ <»/(c+e) 
(282) c  = 

d* 

o/(c+e) 

d    \a/(d+e) 

d + e 
(283) 

where we use the same constants as in Eq. (279). The scale factors are then generated from 

/bi = c* + d* (284) 

fc2 = (l _ d*) c* (285) 

Finally, the joint velocity commands are used by substituting these scale factors into Eq. (281). This 

algorithm enforces the general logic of Table 11 while providing a continuous controller. Vfe term 

this controller the simultaneous singularity avoidance (SSA) controller. 
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To demonstrate how the SSA controller works, we consider the second example trajectory 

again. Using the SSA controller, the outer loop gain can be increased beyond the highest value 

attainable using the CSA controller. The resulting end-effector response is shown in Figure 55, and 

the corresponding dynamic singularity measure is given in Figure 56. Examining the end-effector 

response, we see that the larger outer loop gain used in the SSA controller causes the system to 

approach a dynamic singularity very fast. At about t = 5 seconds, the system reaches the point at 

which the free floating mode begins to shut off. This stops the decline of the dynamic singularity 

measure, but because the CMG is still nearly singular as well, it also induces a marked change in the 

end-effector response. This is clearly seen in the end-effector x-coordinate, which changes slope 

dramatically at this time. The overall response time of the new controller is not much changed from 

the previous controller, even though it uses a significantly higher outer loop gain. In both cases, 

the end-effector reaches the final position at about t = 30 seconds, suggesting that there is an upper 

limit to the performance of the system using an RMRC type of control. In order to improve the 

performance, a CMG cluster with larger control authority would be required. This would delay the 

point at which the CMG cluster saturates, allowing both faster base angular velocity and faster joint 

motion. 

Although the S S A controller did not produce a significantly better response in this example, it is 

preferable to the CSA controller because of its flexibility. Given a wide range of possible maneuvers, 

the CSA controller gains would have to be set low enough to avoid dynamic singularities in the 

worst case. However, the SSA controller gain could be safely set much higher. This would improve 

performance of less demanding maneuvers without risking an encounter with dynamic singularities 

in large maneuvers. 
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6.4 Summary 

In this chapter, we incorporated a cluster of single-gimbal control moment gyros into our dy- 

namic model and into the basic SMM controller. We studied the properties of CMG cluster singu- 

larities in nonredundant clusters, finding them to be functionally equivalent to a state of actuator 

saturation. By using the redundancy inherent in a base-attitude controlled SMM, we developed a 

controller, termed the CSA controller, that could avoid these cluster singularities. This controller 

differed from the RBTC controller of Chapter 5, in that it fully controlled the base attitude under 

most conditions, and phased in a free-floating mode only to alleviate peak torque requirements on 

the base. By smoothing these peaks, the CMG singularities were avoided. Finally, we noted that in 

large maneuvers, this method of avoiding gyro singularities could result in simultaneous encounters 

with dynamic and cluster singularities. Another variation of the SMM controller, termed the SSA 

controller, solved this problem by adaptively changing the gain on the primary task, slowing the 

system response when simultaneous singularity conditions occur. 
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Chapter 7 - Conclusion 

7.1  Conclusions 

Throughout this work, the primary focus has been to demonstrate the need for base control in 

an SMM system, and to develop viable base control concepts. Chapters 3-6 have each contributed to 

this goal, blending the work of earlier researchers with new results and findings to various extents. 

In this chapter, the main points of base control argument and the significant contributions of this 

dissertation are highlighted. 

Chapter 3 laid the foundation for study of SMM control concepts. The equations of motion and 

expressions for the system momenta were developed for a system consisting of rigid bodies. This 

derivation of the equations of motion was the first to incorporate the base angular velocity using 

the quasi-coordinate formulation of Lagrange 's Equation. This method is more flexible than earlier 

derivations, as it is applicable to spatial representations of both the free-floating and base controlled 

cases. By combining the equations with a Euler parameter representation of the attitude, additional 

singularity problems were avoided. 

Chapter 4 began with a description of some key concepts from other authors, including the 

Generalized Jacobian Matrix, dynamic singularities, and Path Dependent Workspace. The GJM was 

developed as the free-floating extension of the fixed-base manipulator Jacobian using conservation 

of momentum to eliminate the base motion variables of the free-floating SMM. Joint configurations 

at which the GJM become singular were termed dynamic singularities. It was shown that these sin- 

gularities could be associated with large regions of workspace, termed Path Dependent Workspace, 

where dynamic singularities could be possibly encountered depending on the path of the SMM. 

A contribution of Chapter 4 was the exploration of alternative designs which were shown 

to alleviate problems with dynamic singularities. It was shown that adding redundant degrees of 
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freedom to the arm increased the VDW, but enabled a local method of singularity avoidance. This 

method consisted of using null motion to decrease a potential function designed to have maxima at 

the singular configurations. Prismatic joints and joint limits were both shown to reduce the PDWby 

eliminating singularity sets from joint space without affecting reachable workspace. A design using 

a combination of redundancy, prismatic joints, and joint limits was suggested which completely 

eliminated dynamic singularities from the workspace. Although this design offered advantages over 

a simple nonredundant, revolute design, it was not ideal because the system could still be trapped 

at a prismatic joint limit. 

Finally, the effect of base control was investigated. It was shown for the general case that total 

base control eliminates all Jacobian singularities. For base attitude control, examples were given 

to demonstrate that singularities are essentially equivalent to kinematic singularities in the sense 

that no region of PDW is created. However, it was also shown that the singular configurations are 

not necessarily identical to the singular configurations predicted by kinematics alone, but are still 

dependent on the inertial properties of the system. 

In Chapter 5, the comparison of the free-floating and base-attitude control concepts was ex- 

tended by evaluating their performance in simulated maneuvers. A new SMM controller was in- 

troduced which could be modified for use with a variety of control concepts. Modifications prin- 

cipally involved changing the method of choosing joint space velocities from task space velocity 

commands, from simple matrix inversion of the fixed-base manipulator Jacobian to task priority 

methods using the pseudoinverse and a null space parameterization of all solutions. Simulations 

demonstrated that momentum constrained Jacobians like the GJM provide better tracking than the 

fixed base manipulator Jacobian, even when base motion feedback is used. The controller variation 

which used the GJM was shown to fail when dynamics singularities were encountered in a simple 

maneuver inside the PDW Free-floating control approaches which do not depend on a Jacobian in- 
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verse have been suggested by other authors, but these methods cannot follow precise paths between 

points. It is demonstrated that by controlling base attitude, dynamic singularities are eliminated and 

precise path following is possible throughout the reachable workspace. Although fuel costs can be a 

serious disadvantage of the base attitude control concept if implemented with thrusters, the Reduced 

Base-Torque Controller is shown to greatly reduce these costs. The RBTC is designed to follow a 

nearly free-floating trajectory away from dynamic singularities, and switch to active base control 

when dynamic singularities are encountered. 

Controlling base attitude with control moment gyroscopes is considered in Chapter 6. The de- 

velopment in this chapter is the first to incorporate a CMG cluster into the dynamic model of an 

SMM. It was shown that for a nonredundant cluster, CMG singularities can be treated as a state of 

actuator saturation. A new controller is introduced based on this idea, avoiding CMG singularities 

by shifting towards a free-floating mode to alleviate demands on the cluster when it approaches 

saturation. Another controller variation builds on this controller, adding a method that avoids si- 

multaneous singularities of the CMG cluster and the SMM system by slowing response time when 

necessary. 

In consideration of the analyses and simulations presented in this work, it is apparent that 

free-floating control is not always a satisfactory option for Satellite-Mounted Manipulators. Using 

current techniques, the free-floating SMM must choose between avoiding dynamic singularities 

and precise tracking. However, by adopting a base attitude control concept, dynamic singularities 

are eliminated and precise tracking is possible over the entire workspace. The inherent redundancy 

of a base attitude controlled SMM can be further exploited to minimize costs associated with base 

actuation. 

144 



7.2  Recommendations for Future Research 

The development of the SMM controller included several key assumptions which limit its ap- 

plication to some extent. First, a perfect knowledge of the inertial properties of the system was 

assumed. This is reasonable for the free motion (not in contact with the environment) of the system, 

although the robustness of the controller to small parameter changes was not investigated. How- 

ever, when the system comes in contact with its environment, such as when the end-effector grasps 

an object, the dynamics change significantly and some method of identifying the new inertial para- 

meters and adaptively changing the controller may be essential. 

The second significant limitation of the work stems from neglecting flexible motion of the 

manipulator links. The realities of spacecraft design suggest that links on a space robot will be 

lightweight and flexible. It is assumed that the flexible effects can be minimized by slowing the 

motion of the system, but this work did not determine the extent to which this reduction in velocity 

or acceleration was needed, or how robust the controller would be with respect to these effects. An 

important first step in this direction would be to add a flexible mode to the links in the system model 

and explore the controller performance over a variety of response times for different maneuvers. 

Neglecting flexibility led to the final major assumption in the controller development. Since 

flexible motion was not explicitly addressed, it was assumed that all desired trajectories would be 

planned with low acceleration. Thus, the command joint accelerations were assumed to be zero 

(9C = 0). This assumption was used in proving the stability of the nonlinear control law. If more 

extensive simulations or experiments should discover instabilities due to this assumption, it could 

be relaxed by adding an acceleration term to the feedforward portion of the control law. This was 

not done in this work to avoid the cost of computing the Jacobian derivative in the controller. 
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These assumptions and limitations suggest several opportunities for future study in the area of 

SMM control. These include: 

• Adaptive control: Some method of identifying unknown inertial properties in the system and 

appropriately adapting the controller would improve the free movement of the end-effector. It 

may be essential to do this when grasping an object. 

• Optimal control: The controllers suggested in this work improve system performance in terms 

of the given metrics, but do not produce true global optimal performance. Applying optimal 

control methods could result in significant improvements. A possible method of reducing the 

dimension of the problem would be to search for the optimal scale factor history of the zero- 

angular momentum term (free-floating mode term) in the RBTC or CSA controllers. 

• New metrics: The performance metrics chosen here were arbitrarily simple. Other metrics may 

exist that could be used with the same controller concepts to improve performance. 

• Free-floating mode with non-zero angular momentum: The controller concepts investigated in 

this work assumed a free-floating mode with zero angular momentum. The effect of a non-zero 

constraint over a portion of a maneuver could affect the singularities of the system and be used 

to improve performance. 

• Redundant CMG cluster: Only nonredundant CMG clusters were addressed in this work. 

Incorporating redundancy would introduce interior CMG singularities which would require a 

different method of avoidance. Techniques to avoid interior singularities using the combined 

redundancy of the cluster and the arm should be investigated. 

• Physical Experiments:   The final recommendation must acknowledge the importance of 

practical physical experiments.  The conclusions presented here rely heavily on experience 
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with a.simulated system, which inherently includes many assumptions and simplifications. 

While space testing may be prohibitively expensive at this stage of SMM research, some real 

experiments using the control concepts of this dissertation would be desirable. 
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APPENDIX A - Some Notes on Notation 

There are several notational devices and conventions in the dissertation that may not be uni- 

versally understood. The following explanations should clarify them somewhat. In referring to the 

position or velocity variables, the frame of reference is critical. In this work, a combination of su- 

perscripts and subscripts is used to distinguish the reference frames associated with a given variable. 

The clearest way to explain their use is by example. A position variable, rb
a, indicates the position 

of a point fixed in the 6-frame (typically its origin) with respect to the o-frame. Similarly, an angu- 

lar velocity variable, ub
a, is the angular velocity of the b-frame with respect to the a-frame. Rotation 

matrices are handled in much the same way. Rb
a denotes the rotation of the 6-frame with respect to 

the a-frame, so that if a vector v has components v in the 6-frame, its components in the a-frame 

are given by Rb
av. 

Although many of the fundamental quantities of dynamics are best represented by vector ex- 

pressions, matrix expressions are often better suited for computations. One notational device often 

used in the translation is the (...)x operator. This operator is used to designate a skew-symmetric 

matrix formed from vector components in the following way: Given a vector v with components 

v = (yi, vi, V3), v * is defined by 

0 — v3    t>2 
(286) 

This operator is used most often when translating a vector cross-product to a matrix representation. 

A cross product, v x w becomes vx w. Some useful properties associated with the operator are: 

0 -v3 V2 

v* = ^3 0 -v\ 
-vi v\ 0 

.x„„   _      ...x., (287) V   w    =    —w  V 

(V*)T     =     _v> 
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Another notation used in some of the developments of Chapter 3 is index notation. This nota- 

tion is convenient for situations in which higher order tensors arise, making matrix notation insuf- 

ficient or awkward. A complete description of this notation would be rather lengthy, but the most 

important features are described here. In index notation, there are two types of indices: dummy 

indices and free indices. A dummy index is an index that is repeated within a single term of an ex- 

pression, and implies a summation over that index. For example, given two vectors a and b, their 

dot product can be represented by a^. This is shown below, 
3 

a • b = a b = afci = 2_^ a$i 

Generally, the summation limits are to be understood from context. In contrast to the vector example 

above, in this paper the summation is most often over the number of links in the robot. Note that 

an index may only be repeated one time in a term. A term in which a given index appears three 

or more times is not defined. A free index is an index that appears only once in a given term and 

the number of free indices indicates of what order tensor that element is a part. For example, one 

free index in a term means that the term is an element of a vector (1st order tensor), while two free 

indices means it is an element of a matrix (2nd order tensor). In any expression, the number of free 

indices in each term must be equal. Some examples of index notation are: 

Example 1  Matrix-lector multiplication: 
Ab=> (Ab)i = Aijbj 

Example 2 Matrix-Matrix multiplication: 
AB =* (AB)tj = AikBkj 

The primary reason for index notation is its elegant handling of 3rd order tensors, which appear 

occasionally in this work. For example, consider a matrix, M € 5ftnxn, which is a function of a 

vector, isF. The derivative of M with respect to a; is a tensor, whose elements require three 

indices. Manipulation of this tensor is straightforward with index notation, as shown below 
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Example 3   3rd Order Tensor-Vector multiplication: 

3rd order tensor 

d ,*,,   usw dM 

Jt(M(X(t)))     = —       x 

dM . .,       dMij 
—x   =>   Mij = —^-: 
dx oxk 

Two useful functions when working with index notation are the Kronecker delta, 6ij, and the 

alternator function, eijk. The Kronecker delta is defined by 

A i   1 for i = j 
Sij = 

The alternator is defined by 

for i T^ j 

1 for ijk = 123,312,231 
eijk 4 {   -1 for ijk = 213,321,132 

0 repeated subscripts 
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APPENDIX B - Useful Identities and Properties 

B.l  Differentiating the Base Rotation Matrix 

The position of a point fixed in the spacecraft base with respect to the T\ frame can be con- 

sidered the sum of the position of the base center of mass and a position relative to this point. In 

vector form, 

vP = r0 + rg (288) 

Differentiating this vector equation with respect to the inertial frame gives 

fp = f0 + r0
> + u;oXr0' (289) 

If we assume that the base does not translate, f o = 0, and since the point is fixed in the base, TQ = 0. 

Then Eq. (289) becomes 

fp = wo x r£ (290) 

Converting to matrix form, Eq. (290) can be written as 

rp = R°I^rp
0 (291) 

where we have written rpin inertial frame (Ti) components and u>o and 7Q in base frame {To) 

components. The rotation matrix, R°j, converts JT0 components to Ti components. Now suppose 

that Eq. (288) is converted to matrix form before differentiating. It becomes 

rp = r0 + Ry0 (292) 

where we have written rp and ro in Ti components and TQ in TQ components. Now differentiating 

the matrix expression, Eq. (292), gives 

rp = r0 + Ä?rg + Ä?rg (293) 

As before, fo and TQ are both zero, leaving 

rP = Ry0 (294) 
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Equating the left-hand side of Eqs. (291) and (294), we have 

Since this is true for any arbitrary point, T-Q, in the base, we must have 

Rj - RjU>Q 

(295) 

(296) 

B.2  Reducing the Equations of Motion 

The equations of motion for the SMM are originally written with a full set of generalized 

coordinates as 

M(q)q + C{q,q)q = Q (297) 

In the derivation of the SMM controller, it is convenient to reduce the equations to include only the 

actuated coordinates, eliminating the equations and coordinates & for which Qi = 0. First, divide 

Eq. (297) into two sets of equations, as 

Mn   Mi2 
Mix   M22 

Solve the top equation for q\, 

<7i 
•72 

+ Cll     Cl2 
Ci\   Cii 

91 
92 

0 
Q2 

q\ = -Mfi1 (Mi2<72 + Cnqi + Cnqi) 

Substitute this result into the lower equation, 

(M22 - M2iMf1
1Mi2) q\ + (C2i - M2iMf1

1Cn) en 

+ (C22 - M2iM1~1
1Ci2) qi 

Now q\ is eliminated using the momentum constraint, 

Mngi+Mi2g2   =   0 

qi    =   -M^Miifa 

so that Eq. (300) becomes' 

Mq2 + Cqi = Q2 

(298) 

(299) 

Q2 (300) 

(301) 

(302) 

(303) 
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where 

M   =   M22-MnM{1
1M12 (304) 

C   =   C22-M2lM^C12-{C2l-M2lM^Cn)M^Ml2 (305) 

B.3  Passivity property applied to SMMs 

In the discussion of the stability of the SMM controller developed in Chapter 5, it was assumed 

that the reduced equations of motion had the following property: 

9T (if - 2c) 0 = 0 (306) 

An analogous expression for terrestrial robot manipulators is referred to as the "passivity" property 

by Murray, Li, and Sastry [27], and can be shown to be a direct result of the conservation of energy. 

In this appendix, we offer a proof that demonstrates that this property applies to SMMs as well. 

For an SMM, the total energy is assumed to be equal to the total kinetic energy, which can be 

written in two equivalent forms, 

or 

T=-fM(q)q (307) 

T = \qjM{q)q2 (308) 

Differentiating T = T(q, q) with respect to time gives 

dT       dT r = f'+f' <309> 
Now rearranging Lagrange's Equation provides the relation 

31  -   d(^)-QT OH) dq dt \dq J 

Substituting Eq. (311) into Eq. (309), 

*-M*(£)-«T)' 
M»r)-«' (313) 
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=    jt(qTMq}-QTq (314) 

=   2T-QTq (315) 

Then 

f = QTq (316) 

Now from the previous section of this appendix, the equations of motion can be written in a 

reduced form, in which unactuated coordinates are designated by 91 and the actuated coordinates 

are designated by q2. Using this notation, 

f=Qjqi+Qjq2 = Qjq2 (317) 

since Q\ = 0 by definition. 

Now differentiating Eq. (308) gives 

T=qjMq2 + ^qjäq2 (318) 

and from the reduced equations of motion, Eq. (303), 

Mq2 = Q2-Cq2 (319) 

Substituting this into Eq. (318) and equating the result to Eq. (317) gives 

T   =    Ö2  (Q2-Cg2j+^qjMq2 = Qjq2 (320) 

=    <ijQ2 + qj QM - Ö\ q2 = Qlq-i (321) 

Recalling that T is a scalar, each term is equal to its transpose, so subtracting Q2q2 from each side 

leaves 

.Tn,. 

or 

<fe'  [-M-C)q2 = 0 (322) 

qj [M - 2C) q2 = 0 (323) 
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APPENDIX C - Elements ofM and C Matrices 

The elements of the M and C matrices used in the equations of motion in this work can be 

found using the equations in Chapter 3. This process is quite tedious for even the smallest systems 

and can be done best by a symbolic math software package such as Mathematica. For the planar 

two-link SMM used in much of this work, the elements are shown below. 

M(l,l) =m0 + mi + m2 

M(l,2)=0 

M(l, 3) = -a0misQ — aom2s0 - (ai"iisoi)/2 - c^m^oi - (a2"^25oi2)/2 

M(l,4) = — (aimisoi + 2aim2s0i + a2m2s0i2)/2 

M(l, 5) = -(a2m2s0i2)/2 

M(2,2) = m0 + mi + m2 

M(2,3) = a0mico + aom2co + (aimiCoi)/2 + 0x7712001 + (a2ro-2coi2)/2 

M(2,4) = (aimicoi)/2 + aim2coi + (a2m2coi2)/2 

M(2,5) = (a2m2coi2)/2 

M(3,3) = io + -fi 4- h + (ofmi)/4 + a^mi + a[mi + (a2m2)/4 + a^rni + aiaomici + 

2aia0m2ci + a\airaic<i + a2a0m2ci2 

M(3,4) = /i+/2+(ai"Xl)/4+afm2+(a|m2)/4+(oiaomiCi)/2+aia0m2Ci+ai02m2C2+ 

(a2a0m2ci2)/2 

M(3, 5) = 72 + («2m2)/4 + (aia2m2c2)/2 + (a2a0m2ci2)/2 

M(4,4) = h+h + (afmi)/4 + afm2 + (a|m2)/4 + ai a2"^c2 

M(4,5) = h + (o2m2)/4 + (aaa2m2c2)/2 

M(5, 5) = 72 + (a|m2)/4 

C(1,1) = 0 
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C(l,2) = 0 

C(l>3) = -(2ao^icow+2a0m2coa;+aimicoiw+2aim2Coiü;+a2m2Co12W+aimiCoi6li + 

2aim2c0iöi + a2"i2Coi2Öi + a2m2Coi26'2)/2 

C'(1!4) = -(alml^lw+2aim2c0ia;+a2m2Coi2W+aim1coiö1+2aim2Coiöi+a2m2Coi2Öi + 

a2"T-2Coi2Ö2)/2 

C(l, 5) = -(a2m2coi2(w + #i + ö2))/2 

C(2,1) = 0 

C(2,2) = 0 

C(2,3) = —(2aomiwso+2aom2WSo+aimiwsoi+2aim2CJSoi+aimiöisoi+2aim2Öisoi + 

a2m2wsoi2 + a2m2Öisoi2 + a2m2Ö25oi2)/2 

C(2,4) = -(aimicjsoi+2aim2wsoi+aimi6'isoi+2oim20isoi+a2m2wsoi2+a2m20isoi2+ 

O2m2Ö2S0i2)/2 

C(2, 5) = -(a2m2(w + öi + ö2)a0i2)/2 

C(3,1) = 0 

C(3,2) = 0 

C(3,3) = — (aiaQm\9\S\) — 2aiaom20iSi — aia2m2#2S2 — a2^o"^2^l^l2 — a2aom2ö2si2 

C(3,4) = —(aiaomiöi5i+2aiaom2Ö1s1+2aia2m2Ö2S2+a2aom2ö1si2+a2aom2Ö2Si2)/2 

C(3, 5) = -(a2m2(ai02s2 + a0Öisi2 + a0ö2si2))/2 

C(4,1) = -(aimiCoia;+2aim2coiw+a2m2(^12a;+aimiCoiöi+2aim2coiö1+a2Wi2Cöi2Öi+ 

a2"l2C012Ö2)/2 

C(4,2) = — (airnicjsoi+2oim2WSoi+aimiöiSoi+2air^2Öisoi+ß2"T'2WSoi2+a2Tra2Öisoi2+ 

a2m26>2soi2)/2 
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C(4,3) = (aimic0ifox)/2+aim2Coirox+(a2m2coi2roa;)/2+0.5a1aomiW5i+oiaom2WSi- 

(aiaomiöiSi)/2—aiaom2öiSi+(aim1f0ySoi)/2+a1m2ro3/Soi—aia2"^2^2S2+0.5a2ao"T'2WSi2— 

(a,2aQm20\Sii)/2 - (a2aom202Si2)/2 + (a^m^roySfm)/^ 

C(4,4) = (aimicoiroa; + 2aim2Coirox + aimicowrox + aiao^iwsi + 2aiaom-2Wsi + 

aimifoj/Soi + 2aim2ro2/5oi — 2ai<i2m2#2S2 + avaom^wsw + cwrwroySoii) /2 

C(4, 5) = (a2m2Coi2?:'oa:)/2+aia2m2WS2+0.5a1a2m2ÖiS2-0.25aia2m2Ö2S2+(a2ao"T'2^si2)/2+ 

(o2m2foySoi2)/2 

C(5,1) = -(o2m2Coi2(w + 0i + ö2))/2 

C(5,2) = -(a2m2(w + <?i + 02)soi2)/2 

C(5,3) = (a2m2C0i2':-oi)/2+0.5aia2"T'2W52—(ai^2"T'202S2)/2+O.5a2aow,2^l*i2—(a2ao"i20i5i2)/2- 

(a2ao"^202Si2)/2 + (o2"i2^soi2)/2 

C(5,4) = (a2m2(coi2'iox - ai<92S2 + a0vsn + r0ysoi2))/2 

C(5, 5) = (a2m2Coi2rox)/2 + (aia2m2ws2)/2 + O.25aia2m20iS2 + (a2ao«i-2^si2)/2 + 

(a2m2roj/Soi2)/2 
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APPENDIX D - Implementations of Nakamura's Methods 

D.l   Singularity-Robust Inverse (SR Inverse) 

This appendix provides an overview of the Singularity-Robust inverse (SR inverse) technique, 

as it was implemented in Chapter 5. For more details on this inversion method, see Ref. [29]. Many 

robot controllers require an inversion of the manipulator Jacobian to convert workspace velocity to 

joint space velocity as in the equation 

0 = J-H (324) 

The purpose of the SR inverse is to eliminate excessive joint velocities which can occur near singu- 

larities of the Jacobian. The joint speed reduction is attained by trading exactness of the solution to 

Eq. (324) for a more feasible, but inexact, solution. 

Consider how the typical inversion technique, the pseudoinverse, is computed. First, a singular 

value decomposition (SVD) is performed on the manipulator Jacobian (J), giving 

J = UXVr (325) 

where U and V are orthonormal matrices and S is a diagonal matrix of singular values, 

S = 

0"1 0 0 0 
0 C2 0 0 

0 0 
0 0 oy 

(326) 

ordered such that cr\ > cr2 > ... > crn. The columns of U and V form bases forthe work and joint 

spaces respectively. The pseudoinverse is computed by 

j# = FS#?7T (327) 

158 



where 

S# = 

r J_ n 0 n 
ci 

0 a2 
0 0 

0 0 
0 0 _i_ 

(328) 

If J is singular, one or more of the diagonal elements of S will be zero. In E#, the associated 

elements are defined as zero. In this case, movement in the singular direction is impossible, and the 

pseudoinverse solution will not generate joint velocities associated with velocity components in the 

singular workspace direction. However, if J is nearly singular, then crn is very small and l/<rn is 

very large. This results in large joint velocities even for small workspace velocities in the direction 

which is nearly singular. As J approaches a singularity, the joint velocities will approach infinity. 

For a real system, some cutoff value must exist, below which an is treated as zero. This causes a 

sharp discontinuity in the solution of Eq. (324). 

The SR inverse can be defined in a way similar to Eq. (327), 

J* = VY?UJ (329) 

where 

0 

S* = 

cr'i+k 
0      jffr    0        0 

0        0 
(T2 

0 
0 

0 
0 

(330) 

Vl + k    J 

The scale factor k is some small, but finite, value. In this way, as J nears a singularity, an will 

become small, but the diagonal elements of E* will be near those of E# until an gets near k. At this 

point, crn will gracefully go to zero at the singular configuration. The SR inverse will not give an 

exact solution to Eq. (324), butthe error will be small except when near a singularity. The magnitude 

of the error will depend on the value of the scale factor k. In implementing the SR method in the 

example in Chapter 5, we used Eqs. (329) and (330) with a scale factor A; = 0.01. 
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Using the SR inverse can occasionally result in the robot getting "trapped" at a singularity. 

This occurs when the desired motion is in the singular direction as the manipulator nears the singu- 

lar configuration. The SR inverse solution slows the joint velocities down as the manipulator ap- 

proaches the singularity, and if no other velocity components exist to drive the manipulator through 

the singular configuration, it can come to a complete stop. Consider a two-link planar arm, in the 

singular configuration shown in Figure 57, which is commanded to move in the singular direction 

(x-direction). The Jacobian at this configuration is 

(331) 

(332) 

(333) 

(334) 

(335) 

(336) 

(337) 

(338) 

J = 0   0 
2   1 

TheSVDof Jis 

J = UY,VT 

U = 
" 0   -1 " 

1    0 

E = ' 2.24   0 
0     0 

V = 0.894    0.447 " 
-0.447   0.894 

Then the SR inverse is given by 

J*  =  vz*uT 

Since the desired velocity is 

0.894     0.447 
-0.447   0.894 

r = 

0.447   0 
0       0 

0     1 
-1   0 

0 
0 

(339) 

the inverse equation gives the joint velocity 

9 = J*r = 

so if the system reaches the singular configuration, while the controller is demanding movement in 

the singular direction, the arm comes to a complete stop. 
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Figure 57. Planar Two-Link In Singular Configuration 
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D.2  Bidirectional Approach to SMM Path Planning 

This appendix outlines the Bidirectional Approach of Nakamura and Mukherjee as it was im- 

plemented for the example given in Chapter 5. Further details can be found in Ref. [30]. Their 

method is slightly modified here, as we did not eliminate the base translation before applying the 

method. This does not change the results, since the linear momentum constraint is holonomic and 

the translation coordinate can be included or not without affecting the system dynamics. We chose 

to retain the translation coordinate purely for convenience, since it made the algorithm more com- 

patible with our existing MATLAB code. In practice, it may be more efficient computationally to 

eliminate the translation coordinate before applying the bidirectional path planning algorithm. Re- 

call the states of an SMM, defined as base position, base orientation, and arm joint angles 
ro 

x =     Vt 

The state velocities are given by 

x = 
ro U       0       0 V 

Ü = o  A (a)  o U! 

9 0      o     u 9 

(340) 

(341) 

Then, using the momentum expressions, Eqs. (101) and (109), a velocity relation can be written 

between the actuated and unactuated states (recall this method is for a free-floating SMM, so only 

arm joints are actuated). The momentum expressions, combined into a single matrix equation, are 

Hv   Hu 
v 
u + Pe 

He 

Solving for the unactuated base velocities gives 

v 
Hv   Hu 

-l 
Pe 
He 

Combining Eqs. (341) and (343), we can write 

(342) 

(343) 

(344) 
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where 

G = 
U      0       0 " 
0    A(ß)    0 
0       0      u 

- Pv P. 1 
-l 

[ Pe 1 
Hv Hw [#* J 

U 

(345) 

Suppose we intend to drive an SMM from some initial state, XQ, to a desired state X4. First, 

construct a virtual system comprised of two identical SMMs, writing a state relation similar to Eq. 

(344) for the combined system, 

x2 J        [    U      ^2 J   [ 6*2  J 

Eq. (346) represents a dynamic system that can be controlled to achieve a desired state. Define a 

Lyapunov function 

V = ^AxTKAx (347) 

where K" is a positive definite gain matrix (we used an identity matrix), and Ax is the difference 

between the states of the two halves of the virtual system, 

Ax = X\ — X2 

Differentiating Eq. (347) gives 

V = AxYK(x1-x2) 

The system inputs are defined as the actuated joint velocities 

(348) 

(349) 

(350) 

(351) 

Then Eq. (349) can be rewritten 

where 

V = AxTK 
U2 

K = K[Gi   -G2] 

(352) 

(353) 
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Now choose the control law 

Ul     = -K*Ax (354) 
u2 J 

so that Eq. (352) becomes 

V = -AxTkK*Ax (355) 

Then according to Lyapunov's direct method, the system of Eq. (346) is guaranteed to converge to 

the state where Ax = 0, provided that V < 0, with the equality holding only for Ax = 0. This is 

true if KK* is positive definite for all states. Unfortunately, Nakamura and Mukherjee show that it 

is only positive semidefinite, and configurations exist where V = 0 for Ax ^ 0. This occurs when 

KT has a nontrivial null space, and these configurations are equivalent to dynamic singularities. 

Usingthe controllaw Eq. (354), the system differential equation, Eq. (346), can be numerically 

propagated from an initial state 

x (*>) = 
Xi(tQ) 

X2 (t0) 

Xo 
Xd 

to a final state 

where 

x (*/) = 
Xl (tf) 

X2 (tf) 

(356) 

(357) 

W-\x2(2tf-t) 
0<t<tf 

tf<t< 2tf 

Ax (tf) = xx (tf) - x2 (tf) = 0 (358) 

Assuming the system does converge, then a joint trajectory can be constructed for the real system 

to drive it from Xo to Xd by combining the two halves of the virtual system as follows: 

(359) 

To implement this trajectory with our basic SMM controller, the state trajectory of Eq. (359) 

was converted to an end-effector trajectory using the forward kinematic equation, Eq. (5), giving 

r(t) = f(x(t)) (360) 

This end effector trajectory then became the command end-effector position, rd (t), input to the 

free-floating controller using the GJM (see Figure 17). Since the end effector trajectory is derived 
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from a convergent solution of the bidirectional algorithm, dynamic singmarities are avoided, and 

the basic controller performed well. 

In our experience with this algorithm, singularities are still frequently encountered if the end 

state is chosen arbitrarily. However, by choosing end states which correspond to the end states arising 

from performing the maneuver with the GJM variation of our SMM controller, this method has 

worked well. In cases like Maneuver Three where the GJM based controller fails due to a singularity, 

this technique for finding the end state cannot be used. In these instances, adequate results were 

obtained by using the base attitude at the point where the singularity was encountered and adjusting 

the joint angles to match the end-effector position to the target point. Another practical concern 

we have in using this method is the added computational cost not only of the inverse kinematics 

problem, but also of the path planning algorithm, both of which must be performed before the end- 

effector can begin moving. 
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